Answer:
Explanation:
the molar mass for Na2CO3 is 2*23+12+3*16=106 g/mole
106*0.251=26.606 grames
A. Gain 2 electrons
B. Gain 3 electrons
C. Lose 2 electrons
D. Lose 3 electrons
Nitrogen changes from +5 in - to +2 in NO. This means nitrogen has gained 3 electrons. Option B
To determine the change in electrons for nitrogen in the given reaction, we need to compare the oxidation state of nitrogen in the reactant (-) and the product (NO).
In the reactant, -, nitrogen is in the +5 oxidation state. This is because oxygen has an oxidation state of -2, and there are three oxygen atoms in -. Therefore, nitrogen must have an oxidation state of +5 to balance the overall charge of -.
In the product, NO, nitrogen is in the +2 oxidation state. This is because oxygen has an oxidation state of -2, and there is only one oxygen atom in NO. Therefore, nitrogen must have an oxidation state of +2 to balance the overall charge of NO.
By comparing the oxidation states of nitrogen in the reactant and the product, we can determine the change in electrons. The change in oxidation state corresponds to the change in the number of electrons gained or lost by the nitrogen atom.
In this case, nitrogen changes from +5 in - to +2 in NO. This means nitrogen has gained 3 electrons.
Therefore, the correct answer is B) Gain 3 electrons.
The nitrogen atom undergoes a reduction because it gains electrons, reducing its oxidation state from +5 to +2 in the reaction.
Option B
for more such question on electrons visit:
#SPJ8
pH scale is used to measure the acidity or alkalinity on a scale of 0-14 where 0-6.9 is the acidic region , 7.1-14 is the basic region and 7 is for the neutral substance. We can calculate the concentration of proton from pH.
where is the concentration of proton
As per the question ,the pH of coffee is 5.6 and we need to find the concentration of proton so putting the values in the above equation, we get
Molar mass of the weak base = 82.0343g/mole.
Note: pKa = -logKa
pKb = -logKb
pH + pOH = 14
[H+ ] [OH- ] = 10^-14
Answer:
11.39
Explanation:
Given that:
Given that:
Mass = 1.805 g
Molar mass = 82.0343 g/mol
The formula for the calculation of moles is shown below:
Thus,
Given Volume = 55 mL = 0.055 L ( 1 mL = 0.001 L)
Concentration = 0.4 M
Consider the ICE take for the dissociation of the base as:
B + H₂O ⇄ BH⁺ + OH⁻
At t=0 0.4 - -
At t =equilibrium (0.4-x) x x
The expression for dissociation constant is:
x is very small, so (0.4 - x) ≅ 0.4
Solving for x, we get:
x = 2.4606×10⁻³ M
pOH = -log[OH⁻] = -log(2.4606×10⁻³) = 2.61
pH = 14 - pOH = 14 - 2.61 = 11.39
Answer: a) : negative
b) : positive
c) : positive.
d) : negative
e) : positive.
f) : positive.
Explanation:
Entropy is the measure of randomness or disorder of a system. If a system moves from an ordered arrangement to a disordered arrangement, the entropy is said to decrease and vice versa.
is positive when randomness increases and is negative when randomness decreases.
a)
As ions are moving to solid form , randomness decreases and thus sign of is negative.
b)
As solid is changing to gas, randomness increases and thus sign of is positive.
c)
As 2 moles of reactants are converted to 4 moles of products , randomness increases and thus sign of is positive.
d)
As gas is changing to solid, randomness decreases and thus sign of is negative.
e)
As 7 moles of reactants are converted to 8 moles of products , randomness increases and thus sign of is positive.
f)
As solid is changing to gas, randomness increases and thus sign of is positive.
Explanation:
pH is use calculate the acidic strength of a substance ,
The value of pH is calculated as , negative log of the concentration of Hydrogen ions .
Therefore ,
pH = - log [ H ⁺]
rearranging the above equation , to find the hydrogen ion concentration . log [ H ⁺] = pH
log [ H ⁺] = - pH
[ H ⁺] = antilog ( - pH )
Hence , from the question , the hydrogen ions can be calculated by using the above equation ,
( 1 )
pH = 6.95
Since ,
[ H ⁺] = antilog ( - pH )
[ H ⁺] = antilog ( - 6.95 )
[ H ⁺] = 1.12 * 10 ⁻⁷
( 2 )
pH = 7.25
Since ,
[ H ⁺] = antilog ( - pH )
[ H ⁺] = antilog ( - 7.25 )
[ H ⁺] = 5.62 * 10 ⁻⁸
( 3 )
pH = 8.1
Since ,
[ H ⁺] = antilog ( - pH )
[ H ⁺] = antilog ( - 8.1 )
[ H ⁺] = 7.94 * 10 ⁻⁹
Answer:
Mass CO2 = 3.75 grams
Mass H2O = 2.30 grams
Mass SO2 = 2.73 grams
Explanation:
Step 1: Data given
Density of Liquid ethyl mercaptan, C2H6S = 0.84 g/mL
Volume of ethyl mercaptan = 3.15 mL
Step 2: The reaction
2C2H6S + 9O2 → 4CO2 + 6H2O + 2SO2
Step 3: Calculate mass of ethyl mercaptan
Mass = Volume * density
Mass ethyl mercaptan = 3.15 mL * 0.84 g/mL
Mass ethyl mercaptan = 2.646 grams
Step 4: Calculate moles ethyl mercaptan
Moles = mass / molar mass
Moles ethyl mercaptan = 2.646 grams / 62.13 g/mol
Moles ethyl mercaptan = 0.04259 moles
Step 5: Calculate moles of other products
For 2 moles ethyl mercaptan we need 9 moles O2 to produce 4 moles CO2, 6 moles H2O and 2 moles SO2
For 0.04259 moles we need 0.1917 moles O2 to produce:
2*0.04259 = 0.08518 moles CO2
3*0.04259 = 0.1278 moles H2O
1*0.04259 = 0.04259 moles SO2
Step 6: Calculate mass produced
Mass = moles * molar mass
Mass CO2 = 0.08518 moles * 44.01 g/mol
Mass CO2 = 3.75 grams
Mass H2O = 0.1278 moles * 18.02 g/mol
Mass H2O = 2.30 grams
Mass SO2 = 0.04259 moles * 64.07 g/mol
Mass SO2 = 2.73 grams