Answer:
Mechanical to Heat
explanation:
The wood itself can make mechanical energy but when it's on fire it makes heat energy
Answer: Chemical to heat and light
Explanation: The energy transforms from chemical energy to heat and light energy. Because when the candle burns a chemical reaction occurs and produces heat and light.
Answer : The rate for the formation of hydrogen is, 1.05 M/s
Explanation :
The general rate of reaction is,
Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
The given rate of reaction is,
The expression for rate of reaction :
The rate of reaction expression is:
As we are given that:
Now we to determine the rate for the formation of hydrogen.
Thus, the rate for the formation of hydrogen is, 1.05 M/s
conduction
convection
radiation
Answer:
S²⁻(aq) + Cr²⁺(aq) ⇄ CrS(s)
Explanation:
The molecular equation includes all the species in the molecular form. Usually, it is useful to write this first to balance the equation. This is a double displacement reaction.
K₂S(aq) + Cr(NO₃)₂(aq) ⇄ 2 KNO₃(aq) + CrS(s)
The full ionic equation includes all ions and the species that no dot dissociate in water.
2 K⁺(aq) + S²⁻(aq) + Cr²⁺(aq) + 2 NO₃⁻(aq) ⇄ 2 K⁺(aq) + 2 NO₃⁻(aq) + CrS(s)
The net ionic equation includes only those ions that participate in the reaction and the species that do not dissociate in water.
S²⁻(aq) + Cr²⁺(aq) ⇄ CrS(s)
The net ionic equation for the precipitation reaction is: Cr+ + 3S → CrS(s)
The net ionic equation for the precipitation reaction between potassium sulfide and chromium(II) nitrate can be written as:
Cr + 3S → CrS(s)
In this reaction, the chromium(II) ions (Cr) react with the sulfide ions (S) to form chromium(II) sulfide (CrS) which precipitates as a solid.
#SPJ6
Answer:
If the partial pressure of N2 in a scuba divers blood at the surface is 0.79 atm, what will the pressure be if he/she descends to a depth of 30 meters (4 atm) and stays there long enough to reach equilibrium (b)
Explanation:
for every 3m that the internal pressure is lowered, it increases in an atmosphere approximately, so when the blood pressure of nitrogen decreases 30m, it will increase by approximately 10 atm, being enough there for the body to enter into equilibrium
Explanation:
2NOBr(g) --> 2NO(g) 1 Br2(g)
Rate constant, k = 0.80
a) Initial concentration, Ao = 0.086 M
Final Concentration, A = ?
time = 22s
These parameters are connected with the equation given below;
1 / [A] = kt + 1 / [A]o
1 / [A] = 1 / 0.086 + (0.8 * 22)
1 / [A] = 11.628 + 17.6
1 / [A] = 29.228
[A] = 0.0342M
b) t1/2 = 1 / ([A]o * k)
when [NOBr]0 5 0.072 M
t1/2 = 1 / (0.072 * 0.80)
t1/2 = 1 / 0.0576 = 17.36 s
when [NOBr]0 5 0.054 M
t1/2 = 1 / (0.054 * 0.80)
t1/2 = 1 / 0.0432 = 23.15 s
Answer:
(a)
(b)
Explanation:
Hello,
(a) In this case, as the reaction is second-ordered, one uses the following kinetic equation to compute the concentration of NOBr after 22 seconds:
(b) Now, for a second-order reaction, the half-life is computed as shown below:
Therefore, for the given initial concentrations one obtains:
Best regards.
Answer:
The second experiment (reversible path) does more work
Explanation:
Step 1:
A piston confines 0.200 mol Ne(g) in 1.20L at 25 degree °C
(a) The gas is allowed to expand through an additional 1.20 L against a constant of 1.00atm
Irreversible path: w =-Pex*ΔV
⇒ with Pex = 1.00 atm
⇒ with ΔV = 1.20 L
W = -(1.00 atm) * 1.20 L
W = -1.20L*atm *101.325 J /1 L*atm = -121.59 J
(b) The gas is allowed to expand reversibly and isothermally to the same final volume.
W = -nRTln(Vfinal/Vinitial)
⇒ with n = the number of moles = 0.200
⇒ with R = gas constant = 8.3145 J/K*mol
⇒ with T = 298 Kelvin
⇒ with Vfinal/Vinitial = 2.40/1.20 = 2
W = -(0.200mol) * 8.3145 J/K*mol *298K *ln(2.4/1.2)
W = -343.5 J
The second experiment (reversible path) does more work