Answer:
Cellulose is a major component of tough cell walls that surround plant cells, and it's what makes plant stems, leaves, and branches so strong. ... This forms long, cable-like structures, which combine with other cellulose molecules and is what produces such a strong support structure.
Explanation:
Answer:
Cellulose, a tough, fibrous, and water-insoluble polysaccharide, plays an integral role in keeping the structure of plant cell walls stable.
Explanation:
Cellulose chains are arranged in microfibrils or bundles of polysaccharide that are arranged in fibrils (bundles of microfibrils), which in turn make up the plant cell wall.
Answer:
The free energy = -20.46 KJ
Explanation:
given Data:
Pb²⁺ = 0.750 M
Br⁻ = 0.232 M
R = 8.314 Jk⁻¹mol⁻¹
T = 298K
The Gibb's free energy is calculated using the formula;
ΔG = ΔG° + RTlnQ -------------------------1
Where;
ΔG° = standard Gibb's freeenergy
R = Gas constant
Q = reaction quotient
T = temperature
The chemical reaction is given as;
Pb²⁺(aq) + 2Br⁻(aq) ⇄PbBr₂(s)
The ΔG°f are given as:
ΔG°f (PbBr₂) = -260.75 kj.mol⁻¹
ΔG°f (Pb²⁺) = -24.4 kj.mol⁻¹
ΔG°f (2Br⁻) = -103.97 kj.mol⁻¹
Calculating the standard gibb's free energy using the formula;
ΔG° = ξnpΔG°(product) - ξnrΔG°(reactant)
Substituting, we have;
ΔG° =[1mol*ΔG°f (PbBr₂)] - [1 mol *ΔG°f (Pb²⁺) +2mol *ΔG°f (2Br⁻)]
ΔG° =(1 *-260.75 kj.mol⁻¹) - (1* -24.4 kj.mol⁻¹) +(2*-103.97 kj.mol⁻¹)
= -260.75 + 232.34
= -28.41 kj
Calculating the reaction quotient Q using the formula;
Q = 1/[Pb²⁺ *(Br⁻)²]
= 1/(0.750 * 0.232²)
= 24.77
Substituting all the calculated values into equation 1, we have
ΔG = ΔG° + RTlnQ
ΔG = -28.41 + (8.414*10⁻³ * 298 * In 24.77)
= -28.41 +7.95
= -20. 46 kJ
Therefore, the free energy of reaction = -20.46 kJ
To calculate the reaction free energy ΔG for this reaction, we need to use the standard free energy of formation values given in a data tab, the stoichiometry of the reaction, and the specific conditions of the reaction, including the concentrations of Pb2+ and Br−. After a series of calculations, we will get the ΔG value in joules, which can be converted to kilojoules.
The task here is to calculate the reaction free energy ΔG for the Pb2+(aq) + 2Br−(aq) = PbBr2(s) reaction at 25.0°C. From the given information, we can start by calculating the number of moles of PbBr2 from its mass. Then, referring to the thermodynamic data tab of the ALEKS, we find the standard free energy of formation (ΔGf°) values for Pb2+(aq), Br−(aq), and PbBr2(s). Now, we can use these values and the definition of ΔG for a reaction in terms of ΔGf° values and stoichiometry.
ΔG = ΣΔGf°(products) - ΣΔGf°(reactants).
Note that the equation must be balanced so each ΔGf° value is multiplied by the stoichiometric coefficient of that substance in the reaction. It is also important to remember to convert the answer to kilojoules if the ΔGf° values are given in joules/mole. Lastly, the concentrations of Pb2+ and Br− are included in the reaction quotient Q to show the reaction's non-standard conditions.
#SPJ12
Now it is your turn to show what you know about phases of matter and thermal energy transfer! Your task is to create a presentation to explain the transformation of a substance as it changes phases. You may choose to write a story or create a comic strip. For your story or comic, you will create a main character and detail the adventure as your character is exposed to thermal energy, causing it to undergo phase changes from a solid, to a liquid, to a gas. You may create your own comic strip using drawings, presentation software, or this comic strip template.
Your presentation must include the following:
title and introduction of your character, including what substance the character is made of
source of thermal energy your character encountered (conduction, convection, and/or radiation)
a detailed description and/or diagram of the particle transformation from solid to liquid phase
a detailed description and/or diagram of the particle transformation from liquid to the gas phase
You may get creative on this activity. If you are unsure if your idea or software for a presentation will work, contact your instructor for assistance. Be sure to review the grading rubric before you begin.
Here is a comic strip created to explain the transformation of a substance as it changes phases.
Title: The Adventures of Mr. Ice Cube
Introduction: Mr. Ice Cube is a solid block of water. He lives in a freezer, where it is very cold.
Source of Thermal Energy: One day, Mr. Ice Cube is taken out of the freezer and placed in a hot cup of coffee. The hot coffee transfers thermal energy to Mr. Ice Cube, causing him to melt.
Particle Transformation from Solid to Liquid Phase: As Mr. Ice Cube melts, the particles in his solid structure start to move faster. They move so fast that they break free from the solid structure and become liquid particles.
Particle Transformation from Liquid to Gas Phase: As Mr. Ice Cube continues to heat up, the liquid particles start to move even faster. They move so fast that they escape from the liquid state and become gas particles.
Conclusion: Mr. Ice Cube has now transformed from a solid to a liquid to a gas. He is now a cloud of water vapor, floating in the air above the hot cup of coffee.
Find out more on thermal energy here: brainly.com/question/7541718
#SPJ2
Answer:I can't art but I envision a comic of a swimming pool with chlorine water in it. The bottom of the pool is black. The chlorine is happy and excited to protect the people going to swim in it. Then the sun comes out, warms the black tile, the water is heated and the chlorine is boiled into gas form. Unable to control its movement through the atmosphere, the large amount of chlorine from the in-ground pool infiltrates the home of its lovely owners, and they die from chlorine gas inhalation, as well as half the neighborhood.
The end.
Answer:
Check the explanation
Explanation:
Kindly check the attached image below for the step by step explanation to the question above.
Answer:
your percent yield Is
Explanation:
1.5384615385
Brainliest plz
neutrons?
Answer:
Subtracting the number of protons from the atomic mass.
Answer:
Subtract Protons
Explanation:
Since the vast majority of atom's mass is found it's protons and neutrons, Subtracting the Number of Protons ( i.e. the atomic number ) from the atomic mass will give you the calculated number of neutrons in a atom,