Using Boyle's Law of gases which states that the pressure and volume of a gas have an inverse relationship when temperature is kept constant, we find that when the pressure of the gas increases from 5.0 to 7.0 atmospheres, the volume of the gas decreases to approximately 3.57 liters.
The question pertains to the application of Boyle's Law, a fundamental concept in the field of physics dealing with gases. Boyle's Law states that the pressure and volume of a gas have an inverse relationship when the temperature is held constant. This means if the pressure of a gas increases, the volume decreases, and vice versa.
In this case, you have 5.0 liters of a gas under an initial pressure of 5.0 atmospheres. The pressure is then increased to 7.0 atmospheres, and you are asked to determine the new volume of the gas. To solve this problem, we use the formula for Boyle's Law, which is P1V1 = P2V2. We know P1 (initial pressure) is 5.0 atmospheres and V1 (initial volume) is 5.0 liters. P2 (final pressure) is increased to 7.0 atmospheres and V2 (final volume) is what we are trying to find.
So, we plug the numbers into the equation and get: 5.0 atmospheres * 5.0 liters = 7.0 atmospheres * V2. Solving for V2, we find V2 to be approximately 3.57 liters. Therefore, when the pressure of the gas is increased from 5.0 atmospheres to 7.0 atmospheres, the volume decreases to around 3.57 liters, while the temperature remains constant.
#SPJ12
We have to know whether F₂²⁺ is paramagnetic or diamagnetic.
F₂²⁺ is paramagnetic.
If number of unpaired electron in any species is equal to zero, the species is diamagnetic and the species contains unpaired electrons, then the species is paramagnetic.
The magnetic property can be explained using molecular orbital theory.
Total number of electron present in F₂²⁺ is equal to 16 (i.e, 9+9-2). From the molecular orbital electronic configuration, number of electrons present in pi orbitals present is equal to 2.
So, F₂²⁺ is paramagnetic.
Answer : is paramagnetic.
Explanation :
According to the molecular orbital theory, the general molecular orbital configuration will be,
As there are 9 electrons present in fluorine.
The number of electrons present in molecule = 2(9) - 2 = 16
The molecular orbital configuration of molecule will be,
Paramagnetic compounds : They have unpaired electrons.
Diamagnetic compounds : They have no unpaired electrons that means all are paired.
The number of unpaired electron in molecule is, 2. So, this is paramagnetic. That means, more the number of unpaired electrons, more paramagnetic.
Thus, is paramagnetic.
Answer:
pH at the equivalence point is 8.6
Explanation:
A titulation between a weak acid and a strong base, gives a basic pH at the equivalence point. In the equivalence point, we need to know the volume of base we added, so:
mmoles acid = mmoles of base
60 mL . 0.1935M = 0.2088 M . volume
(60 mL . 0.1935M) /0.2088 M = 55.6 mL of KOH
The neutralization is:
HBz + KOH ⇄ KBz + H₂O
In the equilibrum:
HBz + OH⁻ ⇄ Bz⁻ + H₂O
mmoles of acid are: 11.61 and mmoles of base are: 11.61
So in the equilibrium we have, 11.61 mmoles of benzoate.
[Bz⁻] = 11.61 mmoles / (volume acid + volume base)
[Bz⁻] = 11.61 mmoles / 60 mL + 55.6 mL = 0.100 M
The conjugate strong base reacts:
Bz⁻ + H₂O ⇄ HBz + OH⁻ Kb
0.1 - x x x
(We don't have pKb, but we can calculate it from pKa)
14 - 4.2 = 9.80 → pKb → 10⁻⁹'⁸ = 1.58×10⁻¹⁰ → Kb
Kb = [HBz] . [OH⁻] / [Bz⁻]
Kb = x² / (0.1 - x)
As Kb is so small, we can avoid the quadratic equation
Kb = x² / 0.1 → Kb . 0.1 = x²
√ 1.58×10⁻¹¹ = [OH⁻] = 3.98 ×10⁻⁶ M
From this value, we calculate pOH and afterwards, pH (14 - pOH)
- log [OH⁻] = pOH → - log 3.98 ×10⁻⁶ = 5.4
pH = 8.6
To calculate the pH at equivalence in a titration, we need to consider the concentration of the excess strong base in the solution. First, we calculate the moles of the acid and the base, then we find the moles of the excess base. Using this information, we can find the concentration of the excess base and subsequently calculate pOH. Finally, we can convert pOH to pH using the pH + pOH = 14 relationship.
pH at the equivalence point in a titration can be determined by considering the concentration of the excess strong base present in the reaction mixture. In this case, the excess strong base is KOH. We can calculate [OH-] using the stoichiometry of the reaction and the given concentrations. Then, we can find the pOH using the formula -log[OH-]. Finally, we can convert pOH to pH using the pH + pOH = 14 relationship.
Given:
Step 1: Determine the amount of benzoic acid (HC (H5CO2)) in moles:
moles of HC (H5CO2) = volume (L) × concentration (M) = 0.0600 L × 0.1935 M = 0.01161 mol
Step 2: Determine the amount of KOH in moles:
moles of KOH = volume (L) × concentration (M) = 0.0600 L × 0.2088 M = 0.01253 mol
Step 3: Determine the amount of excess KOH in moles:
moles of excess KOH = moles of KOH - moles required for neutralizing HC (H5CO2) = 0.01253 mol - 0.01161 mol = 9.2 × 10-4 mol
Step 4: Determine the concentration of excess KOH:
concentration of excess KOH = moles of excess KOH / volume (L) = 9.2 × 10-4 mol / 0.0600 L = 0.0153 M
Step 5: Determine the pOH of the solution:
pOH = -log[OH-] = -log(0.0153) ≈ 1.82
Step 6: Determine the pH of the solution:
pH = 14 - pOH = 14 - 1.82 ≈ 12.18
#SPJ3
Among all three PCl₃, NO₃⁻ , I₃⁻, H₂Se only I₃⁻ will involve participation of d-orbitals in hybridization as bonding in I₃⁻ will include, s, p and d orbital as shown in the image attached. there will be sp³d hybridization, there will be presence of three lone pairs and 2 bonds as
I⁻ has 8 valence electrons and 2 neighbours atoms which will need one electron each to satisfy their valency.
so the number of electrons on central atom will be:
8-1-1=6
That 6 electrons will make 6/2 =3 lone pairs.
Answer:
The electrons are lost from the valence shell (outermost electron shell) of the atom.
Explanation:
This is able to be inferred not only because valence electrons being lost first is a trend but also because the atom in question has actually 3 valence electrons (13-2-8 = 3).
A H2A and OH− A2− and OH−
B HA− and Li+ A2− and Li+
C HA− and OH− HA− and Li+
D H2A and Li+ HA− and OH−
The main components (more than half of the initial amount of H2A, besides H2O) at equivalence point 1 and 2 (EP1), (EP2) is HA⁻ and Li⁺ A²⁻ and Li⁺.
Titration of acid H₂A with LiOH solution.
At first equivalent points are:
H₂A + LiOH → HA⁻ + Li⁺ + H₂O
The Main component at (EP1) => HA⁻ and Li⁺
At second equivalence point are:
HA⁻ + LiOH → A²⁻ + Li⁺ + H₂O
Main component at (EP2) => A²⁻ and Li⁺
Therefore, the correct option is B which is HA− and Li+ A2− and Li+
Find more information about Titration curve here:
Answer:
B) HA⁻ and Li⁺ A²⁻ and Li⁺
Explanation:
Titration of acid H₂A with LiOH solution.
At first equivalent point
H₂A + LiOH → HA⁻ + Li⁺ + H₂O
Main component at (EP1) => HA⁻ and Li⁺
At second equivalence point
HA⁻ + LiOH → A²⁻ + Li⁺ + H₂O
Main component at (EP2) => A²⁻ and Li⁺
Therefore, the correct answer is B
Answer:
Hence,
1) removed
2) drained through the stopcock
3) get eye level with
4) slow the draining
5) switch to a new flask
Explanation:
After mixing the solutions in a separatory funnel, the stopper should be removed and the liquid should be drained through the stopcock, and the layers allowed to separate. When you get close to the interface between the layers, get eye level with the funnel and turn over to slow the draining heat up until the first layer is collected. Switch to a new flask get eye level with it to collect the second layer.