5.0 liters of a gas are at an initial pressure of 5.0 atmospheres. If the temperature and amount of a gas are kept constant, what is the new volume of the gas when pressure is increased to 7.0 atmospheres?

Answers

Answer 1
Answer:

Final answer:

Using Boyle's Law of gases which states that the pressure and volume of a gas have an inverse relationship when temperature is kept constant, we find that when the pressure of the gas increases from 5.0 to 7.0 atmospheres, the volume of the gas decreases to approximately 3.57 liters.

Explanation:

The question pertains to the application of Boyle's Law, a fundamental concept in the field of physics dealing with gases. Boyle's Law states that the pressure and volume of a gas have an inverse relationship when the temperature is held constant. This means if the pressure of a gas increases, the volume decreases, and vice versa.

In this case, you have 5.0 liters of a gas under an initial pressure of 5.0 atmospheres. The pressure is then increased to 7.0 atmospheres, and you are asked to determine the new volume of the gas. To solve this problem, we use the formula for Boyle's Law, which is P1V1 = P2V2. We know P1 (initial pressure) is 5.0 atmospheres and V1 (initial volume) is 5.0 liters. P2 (final pressure) is increased to 7.0 atmospheres and V2 (final volume) is what we are trying to find.

So, we plug the numbers into the equation and get: 5.0 atmospheres * 5.0 liters = 7.0 atmospheres * V2. Solving for V2, we find V2 to be approximately 3.57 liters. Therefore, when the pressure of the gas is increased from 5.0 atmospheres to 7.0 atmospheres, the volume decreases to around 3.57 liters, while the temperature remains constant.

Learn more about Boyle's Law here:

brainly.com/question/21184611

#SPJ12


Related Questions

Which unit would be most appropriate for measuring the volume of water in a swimming pool? Liters or Kiloliters
The combustion of ethane (C2H6) produces carbon dioxide and steam. 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(g) How many moles of CO2 are produced when 5.90 mol of ethane is burned in an excess of oxygen?
Some people argue that a policy of putting out wildfires is having a negative long-term effect on the number and strength of wildfires. Suggest why this could be the case.
On average, about ____________ of incoming solar radiation is reflected back to space.A 50%B 30%C 20%D 10%
How is energy transfer connected to your life

Use molecular orbital theory to determine whether f22+ is paramagnetic or diamagnetic.

Answers

We have to know whether F₂²⁺ is paramagnetic or diamagnetic.

F₂²⁺ is paramagnetic.

If number of unpaired electron in any species is equal to zero, the species is diamagnetic and the species contains unpaired electrons, then the species is paramagnetic.

The magnetic property can be explained using molecular orbital theory.

Total number of electron present in   F₂²⁺ is equal to 16 (i.e, 9+9-2). From the molecular orbital electronic configuration, number of electrons present in pi orbitals present is equal to 2.

So,  F₂²⁺ is paramagnetic.

Answer : F_2^(2+) is paramagnetic.

Explanation :

According to the molecular orbital theory, the general molecular orbital configuration will be,

(\sigma_(1s)),(\sigma_(1s)^*),(\sigma_(2s)),(\sigma_(2s)^*),[(\pi_(2p_x))=(\pi_(2p_y))],(\sigma_(2p_z)),[(\pi_(2p_x)^*)=(\pi_(2p_y)^*)],(\sigma_(2p_z)^*)

As there are 9 electrons present in fluorine.

The number of electrons present in F_2^(2+) molecule = 2(9) - 2 = 16

The molecular orbital configuration of F_2^(2+) molecule will be,

(\sigma_(1s))^2,(\sigma_(1s)^*)^2,(\sigma_(2s))^2,(\sigma_(2s)^*)^2,(\sigma_(2p_z))^2,[(\pi_(2p_x))^2=(\pi_(2p_y))^2],[(\pi_(2p_x)^*)^1=(\pi_(2p_y)^*)^1],(\sigma_(2p_z)^*)^0

Paramagnetic compounds : They have unpaired electrons.

Diamagnetic compounds : They have no unpaired electrons that means all are paired.

The number of unpaired electron in molecule is, 2. So, this is paramagnetic. That means, more the number of unpaired electrons, more paramagnetic.

Thus, is paramagnetic.

A chemist titrates 60.0 mL of a 0.1935 M benzoic acid (HC (H5CO2) solution with 0.2088 M KOH solution at 25 °C. Calculate the pH at equivalence. The pKg of benzoic acid is 4.20.

Answers

Answer:

pH at the equivalence point is 8.6

Explanation:

A titulation between a weak acid and a strong base, gives a basic pH at the equivalence point. In the equivalence point, we need to know the volume of base we added, so:

mmoles acid = mmoles of base

60 mL . 0.1935M = 0.2088 M . volume

(60 mL . 0.1935M) /0.2088 M = 55.6 mL of KOH

The neutralization is:

HBz + KOH  ⇄  KBz  +  H₂O

In the equilibrum:

HBz + OH⁻   ⇄  Bz⁻  +  H₂O

mmoles of acid are: 11.61 and mmoles of base are: 11.61

So in the equilibrium we have, 11.61 mmoles of benzoate.

[Bz⁻] = 11.61 mmoles / (volume acid + volume base)

[Bz⁻] = 11.61 mmoles / 60 mL + 55.6 mL = 0.100 M

The conjugate strong base reacts:

  Bz⁻  +  H₂O  ⇄  HBz + OH⁻    Kb

0.1 - x                       x        x

(We don't have pKb, but we can calculate it from pKa)

14 - 4.2 = 9.80 → pKb  → 10⁻⁹'⁸ = 1.58×10⁻¹⁰ → Kb

Kb = [HBz] . [OH⁻] / [Bz⁻]

Kb = x² / (0.1 - x)

As Kb is so small, we can avoid the quadratic equation

Kb =  x² / 0.1 → Kb . 0.1 = x²

√ 1.58×10⁻¹¹ = [OH⁻] = 3.98 ×10⁻⁶ M

From this value, we calculate pOH and afterwards, pH (14 - pOH)

- log [OH⁻] =  pOH → - log 3.98 ×10⁻⁶  = 5.4

pH = 8.6

Final answer:

To calculate the pH at equivalence in a titration, we need to consider the concentration of the excess strong base in the solution. First, we calculate the moles of the acid and the base, then we find the moles of the excess base. Using this information, we can find the concentration of the excess base and subsequently calculate pOH. Finally, we can convert pOH to pH using the pH + pOH = 14 relationship.

Explanation:

pH at the equivalence point in a titration can be determined by considering the concentration of the excess strong base present in the reaction mixture. In this case, the excess strong base is KOH. We can calculate [OH-] using the stoichiometry of the reaction and the given concentrations. Then, we can find the pOH using the formula -log[OH-]. Finally, we can convert pOH to pH using the pH + pOH = 14 relationship.



Given:

  • Volume of benzoic acid solution (HC (H5CO2)): 60.0 mL
  • Concentration of benzoic acid solution: 0.1935 M
  • Concentration of KOH solution: 0.2088 M



Step 1: Determine the amount of benzoic acid (HC (H5CO2)) in moles:

moles of HC (H5CO2) = volume (L) × concentration (M) = 0.0600 L × 0.1935 M = 0.01161 mol



Step 2: Determine the amount of KOH in moles:

moles of KOH = volume (L) × concentration (M) = 0.0600 L × 0.2088 M = 0.01253 mol



Step 3: Determine the amount of excess KOH in moles:

moles of excess KOH = moles of KOH - moles required for neutralizing HC (H5CO2) = 0.01253 mol - 0.01161 mol = 9.2 × 10-4 mol



Step 4: Determine the concentration of excess KOH:

concentration of excess KOH = moles of excess KOH / volume (L) = 9.2 × 10-4 mol / 0.0600 L = 0.0153 M



Step 5: Determine the pOH of the solution:

pOH = -log[OH-] = -log(0.0153) ≈ 1.82



Step 6: Determine the pH of the solution:

pH = 14 - pOH = 14 - 1.82 ≈ 12.18

Learn more about pH at equivalence point here:

brainly.com/question/29760073

#SPJ3

Which choice(s) include(s) d-orbital contribution in the hybridization scheme: pcl3, no3─, i3─, h2se ?

Answers

Among all three PCl₃, NO₃⁻ , I₃⁻, H₂Se only I₃⁻ will involve participation of d-orbitals in hybridization as bonding in I₃⁻ will include, s, p and d orbital as shown in the image attached. there will be sp³d hybridization, there will be presence of three lone pairs and 2 bonds as

I⁻ has 8 valence electrons and 2 neighbours atoms which will need one electron each to satisfy their valency.

so the number of electrons on central atom will be:

8-1-1=6

That 6 electrons will make 6/2 =3 lone pairs.

A natural atom possesses the atomic number of 13 and a atomic mass of 27. Three electrons are lost. From what region of the atom are they lost?

Answers

Answer:

The electrons are lost from the valence shell (outermost electron shell) of the atom.

Explanation:

This is able to be inferred not only because valence electrons being lost first is a trend but also because the atom in question has actually 3 valence electrons (13-2-8 = 3).

The titration of an acid (H2A) with LiOH solution generates the following titration curve. What are the main components (more than half of the initial amount of H2A, besides H2O) at equivalence point 1 (EP1) and equivalence point 2 (EP2)? Main Components at EP1 Main Components at EP2
A H2A and OH− A2− and OH−
B HA− and Li+ A2− and Li+
C HA− and OH− HA− and Li+
D H2A and Li+ HA− and OH−

Answers

The main components (more than half of the initial amount of H2A, besides H2O) at equivalence point 1 and 2 (EP1), (EP2) is HA⁻ and Li⁺ A²⁻ and Li⁺.

What is the Titration curve?

Titration of acid H₂A with LiOH solution.

At first equivalent points are:

H₂A + LiOH → HA⁻ + Li⁺ + H₂O

The Main component at (EP1) => HA⁻ and Li⁺

At second equivalence point are:

HA⁻ + LiOH → A²⁻ + Li⁺ + H₂O

Main component at (EP2) => A²⁻ and Li⁺

Therefore, the correct option is B which is HA− and Li+ A2− and Li+

Find more information about Titration curve here:

brainly.com/question/186765

Answer:

B) HA⁻ and Li⁺ A²⁻ and Li⁺

Explanation:

Titration of acid H₂A with LiOH solution.

At first equivalent point

    H₂A + LiOH → HA⁻ + Li⁺ + H₂O

    Main component at (EP1) => HA⁻ and Li⁺

At second equivalence point

    HA⁻ + LiOH → A²⁻ + Li⁺ + H₂O

    Main component at (EP2) => A²⁻ and Li⁺

Therefore, the correct answer is B

After mixing the solutions in a separatory funnel, the stopper should be ______ and the liquid should be _______ and the layers allowed to separate. When you get close to the interface between the layers, ______ the funnel and turn over _______ heat up until the first layer is collected get eye level with to collect the second layer. _______

Answers

Answer:

Hence,  

1) removed  

2) drained through the stopcock  

3) get eye level with  

4) slow the draining  

5) switch to a new flask

Explanation:

After mixing the solutions in a separatory funnel, the stopper should be removed and the liquid should be drained through the stopcock, and the layers allowed to separate. When you get close to the interface between the layers, get eye level with the funnel and turn over to slow the draining heat up until the first layer is collected. Switch to a new flask get eye level with it to collect the second layer.