Upon adding solid potassium hydroxide pellets to water the following reaction takes place: KOH(s) → KOH(aq) + 43 kJ/mol Answer the following questions regarding the addition of 14.0 g of KOH to water: Does the beaker get warmer or colder? Is the reaction endothermic or exothermic? What is the enthalpy change for the dissolution of the 14.0 grams of KOH?

Answers

Answer 1
Answer:

Answer:

a) Warmer

b) Exothermic

c) -10.71 kJ

Explanation:

The reaction:

KOH(s) → KOH(aq) + 43 kJ/mol

It is an exothermic reaction since the reaction liberates 43 kJ per mol of KOH dissolved.

Hence, the dissolution of potassium hydroxide pellets to water provokes that the beaker gets warmer for being an exothermic reaction.

The enthalpy change for the dissolution of 14 g of KOH is:

n = (m)/(M)

Where:

m: is the mass of KOH = 14 g

M: is the molar mass = 56.1056 g/mol

n = (m)/(M) = (14 g)/(56.1056 g/mol) = 0.249 mol

The enthalpy change is:

\Delta H = -43 (kJ)/(mol)*0.249 mol = -10.71 kJ

The minus sign of 43 is because the reaction is exothermic.

I hope it helps you!


Related Questions

Draw the structure of a compound with the molecular formula CgH1002 that exhibits the following spectral data. (a) IR: 3005 cm-1, 1676 cm-1, 1603 cm-1 (b) H NMR: 2.6 ppm (singlet, I = 3H), 3.9 ppm (singlet, I = 3H), 6.9 ppm (doublet, I = 2H), 7.9 ppm (doublet, I = 2H) (c) 13C NMR: 26.2, 55.4, 113.7, 130.3, 130.5, 163.5, 196.6 ppm ?
If 4.0 mol aluminum and 7.0 mol hydrogen bromide react according to the following equation, how many moles of hydrogen are formed and what is the limiting reactant?
Which is the electron configuration for lithium? A. 1s2 B. 2s3 C. 1s22s1 D. 1s12s2
Is clear water pumped from a deep aquifer a pure substance?
Chem help due in 2 hours. please help. problem 14.

Vanadium exhibits a variety of oxidation states. what is the oxidation state of vanadium in vpo3?

Answers

Oxidation state is V(III)

Use the equation editor or "Insert Chemistry - WIRIS editor" to write the balanced molecular chemical equation for the reaction of aqueous 0.13 M lead (II) nitrate, with 0.19 M potassium carbonate. You may need to consult Appendix E to determine the states of each reactant and product. Assume any insoluble products are completely insoluble.

Answers

Answer:

Balanced equation:

Pb(NO_(3))_(2)(aq)+K_(2)CO_(3)(aq)\rightarrow PbCO_(3)(s)+2KNO_(3)(aq)

Explanation:

The chemical reaction between Lead(II) Nitrate and potassium carbonate is as follows.

Lead(II)Nitrate+Potassium\,carbonate \rightarrow Lead(III)\,\,carbonate+Potassium\,nitrate

Pb(NO_(3))_(2)(aq)+K_(2)CO_(3)(aq)\rightarrow PbCO_(3)(s)+2KNO_(3)(aq)

Ionic equation:

Pb^(2+)(aq)+2NO_(3)^(-)(aq)+2K^(+)(aq)+CO_(3)^(2-)(aq)\Leftrightarrow PbCO_(3)(s)+K^(+)(aq)+2NO_(3)^(-)

Cancel the same ions on the both sides of the reaction.

The net ionic equation is as follows.

Pb^(2+)(aq)+CO_(3)^(2-)(aq)\Leftrightarrow PbCO_(3)(s)

Rhodium has an atomic radius of 0.1345 nm and density of 12.41 gm/cm3 . Determine whether it has an FCC or BCC crystal structure.

Answers

Answer:

FCC.

Explanation:

Hello,

In this case, since the density is defined as:

\rho =(n*M)/(Vc*N_A)

Whereas n accounts for the number of atoms per units cell (2 for BCC and 4 for FCC), M the atomic mass of the element, Vc the volume of the cell and NA the Avogadro's number. Thus, for both BCC and FCC, the volume of the cell is:

Vc_(BCC)=((4r)/(√(3) ) )^3=((4*0.1345x10^(-7)cm)/(√(3) ) )^3=2.997x10^(-23)cm^3\n\nVc_(FCC)=(2√(2)r)^(3)  =(2√(2) *0.1345x10^(-7)cm)^3=5.506x10^(-23)cm^3

Hence, we compute the density for each crystal structure:

\rho _(BCC)=(n_(BCC)*M)/(Vc_(BCC)*N_A)=(2*102.9g/mol)/(2.337x10^(-23)cm^3*6.022x10^(23)/mol) =14.62g/cm^3\n\n\rho _(FCC)=(n_(FCC)*M)/(Vc_(FCC)*N_A)=(4*102.9g/mol)/(5.506x10^(-23)cm^3*6.022x10^(23)/mol) =12.41g/cm^3

Therefore, since the density computed as a FCC crystal structure matches with the actual density, we conclude rhodium has a FCC crystal structure.

Regards.

A first-order decomposition reaction has a rate constant of 0.00140 yr−1. How long does it take for [reactant] to reach 12.5% of its original value? Be sure to report your answer to the correct number of significant figures.

Answers

Reactants take 504.87 yr to reach 12.5% of their original value in first-order decomposition reaction.

Equation for the first-order decomposition reaction:-

A_(t) =A_(0) e^(-kt)....(1)

Here,  A_(t) is the final concentration, t is the time,  A_(0) is the initial concentration, and k is the rate constant.

Given:-

A_(t) =0.125A_(0)

k= 0.00140yr^(-1)

Substitute the above value in equation (1) as follows:-

0.125A_(0) =A_(0) e^(-kt) \n0.125A_(0) =A_(0) e^{-k*0.00140 yr^(-1) }\nln(0.125)/(-0.00140)=t\nt=504.87 year

So, 504.87 yr does it take for the reactant to reach 12.5% of its original value.

Find more information about first- order decomposition reaction here:-

brainly.com/question/20607444

Final answer:

The time required for a reactant to reach 12.5% of its original value in a first-order reaction is approximately 1482 years, obtained by applying the formula for the half-life of a first-order reaction and multiplying by 3.

Explanation:

In a first-order reaction, the half-life of the reaction, which is the time it takes for half of the reactant to be consumed, is independent of the concentration of the reactant. Also, for a first-order reaction, it would take approximately 3 half-lives for the reactant to be reduced to 12.5% of its original value. The Integrated Rate Law for a First-Order Reaction can be applied to determine the time it will take.

Given the rate constant (k) is 0.00140 yr¯¹, we will use the formula for the half-life of a first-order reaction: t₁/₂ = 0.693 / k. After calculating the half-life (t₁/₂), multiply it by 3 to determine the time for the reactant concentration to reach 12.5% of its original value. Hence, it would take approximately 1482 years to reach 12.5% of the original value when rounded to the correct number of significant figures.

Learn more about First Order Reaction here:

brainly.com/question/1769080

#SPJ12

How many moles of Al are necessary to form 23.6 g of AlBr₃ from this reaction: 2 Al(s) + 3 Br₂(l) → 2 AlBr₃(s) ?

Answers

0.085 moles of Al are required to form 23.6 g of AlBr₃.

Let's consider the following balanced equation for the synthesis reaction of AlBr₃.

2 Al(s) + 3 Br₂(l) → 2 AlBr₃(s)

First, we will convert 23.6 g to moles using the molar mass of AlBr₃ (266.69 g/mol).

23.6 g * (1mol)/(266.69g) = 0.0885 mol

The molar ratio of Al to AlBr₃ is 2:2. The moles of Al required to form 0.0885  moles of AlBr₃ are:

0.0885molAlBr_3 * (2molAl)/(2molAlBr_3) = 0.0885molAl

0.085 moles of Al are required to form 23.6 g of AlBr₃.

You can learn more about stoichiometry here: brainly.com/question/22288091

Answer:

0.088 mole of Al.

Explanation:

First, we shall determine the number of mole in 23.6 g of AlBr₃.

This is illustrated below:

Mass of AlBr₃ = 23.6 g

Molar Mass of AlBr₃ = 27 + 3(80) = 267 g/mol

Mole of AlBr₃ =.?

Mole = mass/Molar mass

Mole of AlBr₃ = 23.6 / 267

Mole of AlBr₃ = 0.088 mol

Next, we shall writing the balanced equation for the reaction.

This is given below:

2Al(s) + 3Br₂(l) → 2AlBr₃(s)

From the balanced equation above,

2 moles of Al reacted with 3 mole of Br₂ to 2 moles AlBr₃.

Finally, we shall determine the number of mole of Al needed for the reaction as follow:

From the balanced equation above,

2 moles of Al reacted to 2 moles AlBr₃.

Therefore, 0.088 mole of Al will also react to produce 0.088 mole of AlBr₃.

Suppose, in an experiment to determine the amount of sodium hypochlorite in bleach, you titrated a 26.34 mL sample of 0.0100 M K I O 3 with a solution of N a 2 S 2 O 3 of unknown concentration. The endpoint was observed to occur at 15.51 mL . How many moles of K I O 3 were titrated

Answers

Answer:

0.1 M

Explanation:

The overall balanced reaction equation for the process is;

IO3^- (aq)+ 6H^+(aq) + 6S2O3^2-(aq) → I-(aq) + 3S4O6^2-(aq) + 3H2O(l)

Generally, we must note that;

1 mol of IO3^- require 6 moles of S2O3^2-

Thus;

n (iodate) = n(thiosulfate)/6

C(iodate) x V(iodate) = C(thiosulfate) x V(thiosulfate)/6

Concentration of iodate C(iodate)= 0.0100 M

Volume of iodate= V(iodate)= 26.34 ml

Concentration of thiosulphate= C(thiosulfate)= the unknown

Volume of thiosulphate=V(thiosulfate)= 15.51 ml

Hence;

C(iodate) x V(iodate) × 6/V(thiosulfate) = C(thiosulfate)

0.0100 M × 26.34 ml × 6/15.51 ml = 0.1 M

Final answer:

To determine the moles of KIO_3 titrated, use the balanced equation 2 KIO_3 + 5 Na_2S_2O_3 + 6 HCl → 3 I_2 + 6 NaCl + 6 NaClO + 3 H_2O. Therefore, 0.001551 mol of KIO_3 were titrated.

Explanation:

To determine the moles of KIO3 titrated, we need to use the balanced equation for the reaction:

2 KIO3 + 5 Na2S2O3 + 6 HCl → 3 I2 + 6 NaCl + 6 NaClO + 3 H2O

From the equation, we can see that 2 moles of KIO3 react with 5 moles of Na2S2O3. Therefore, the moles of KIO3 titrated can be calculated using the following proportion:

(0.0100 M KIO3 / 1 L) * (15.51 mL / 1000 mL) * (2 mol KIO3 / 5 mol Na2S2O3) = 0.001551 mol KIO3

Learn more about Moles of KIO_3 titrated here:

brainly.com/question/35371620

#SPJ12