Answer:
1. Mass of Carbon is 56.89g
2. Mass of Hydrogen is 6.33g
3. Mass of Oxygen is 75.88
Explanation:
The following were obtained from the question.
Mass of the compound = 139.1g
Mass of CO2 produced = 208.6g
Mass of H2O produced = 56.93
1. Determination of mass of Carbon (C). This is illustrated below:
Molar Mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C = 12/44 x 208.6
Mass of C = 56.89g
2. Determination of the mass of Hydrogen (H). This is illustrated below:
Molar Mass of H2O = (2x1) + 16 = 18g/mol
Mass of H = 2/18 x 56.93
Mass of H = 6.33g
3. Determination of the mass of oxygen (O).
This is illustrated below:
Mass of the compound = 139.1g
Mass of C = 56.89g
Mass of H = 6.33g
Mass of O = Mass of compound - (mass of C + Mass of H)
Mass of O = 139.1 - (56.89 + 6.33)
Mass of O = 139.1 - 63.22
Mass of O = 75.88
Answer:
0.4590
Explanation:
How the refractive index of the hexane + toluene mixture varies linearly with mole fraction, it means that the mole fraction is the fraction that each pure index contribute for the mixture index, so, calling xh the mole fraction of hexane and xt the mole fraction of toluene:
1.375xh + 1.497xt = 1.441
And, xh + xt = 1 (because there are only hexane and toluene in the mixture), so xt = 1- xh
1.375xh + 1.497(1-xh) = 1.441
1.375xh + 1.497 - 1.497xh = 1.441
-0.122xh = -0.056
xh = -0.056/(-0.122)
xh = 0.4590
a hurricane
a volcanic eruption
a landslide
an earthquake
Answer: I believe the answer is an earthquake.
Explanation: Sorry If I am wrong!
Answer:
earthquake
Explanation:
I took the k12 test
Answer:
0.190 M
Explanation:
Let's consider the neutralization reaction between HCl and NaOH.
HCl + NaOH = NaCl + H2O
11.9 mL of 0.160 M NaOH were used. The reacting moles of NaOH were:
0.0119 L × 0.160 mol/L = 1.90 × 10⁻³ mol
The molar ratio of HCl to NaOH is 1:1. The reacting moles of HCl are 1.90 × 10⁻³ moles.
1.90 × 10⁻³ moles of HCl are in 10.0 mL of solution. The molarity of HCl is:
M = 1.90 × 10⁻³ mol / 10.0 × 10⁻³ L = 0.190 M
Answer:
The initial concentration of HCl was 0.1904 M
Explanation:
Step 1: Data given
Volume of HCl solution = 10.0 mL = 0.010 L
Volume of a NaOH solution = 11.9 mL = 0.0119 L
Molarity of NaOH solution = 0.160 M
Step 2: The balanced equation
HCl + NaOH → NaCl + H2O
Step 3: Calculate the concentration of HCl
C1*V1 = C2*V2
⇒with C1 = the concentration HCl = TO BE DETERMINED
⇒with V1 = the volume of HCl = 0.010 L
⇒with C2 = the concentration of NaOH = 0.160 M
⇒with V2 = the volume of NaOH = 0.0119 L
C1 * 0.010 L = 0.160 M * 0.0119 L
C1 = (0.160 M * 0.0119 L) / 0.010 L
C1 = 0.1904 M
The initial concentration of HCl was 0.1904 M
calorimeter. Before placing the sample in the water, the
temperature of the salt and water is 23.72°C. After the
salt has completely dissolved, the temperature of the
solution is 28.54°C.
If 3.15 x 10J of heat was gained by the solution, what
is the total heat for the dissolution reaction of the 6.13 g
of salt?
According to law of conservation of energy, if 31.5 J of heat is gained than same amount of heat is lost .
According to law of conservation of energy, it is evident that energy is neither created nor destroyed rather it is restored at the end of a chemical reaction .
Law of conservation of mass and energy are related as mass and energy are directly proportional which is indicated by the equation E=mc².Concept of conservation of mass is widely used in field of chemistry, fluid dynamics.
Law needs to be modified in accordance with laws of quantum mechanics under the principle of mass and energy equivalence.This law was proposed by Julius Robert Mayer in the year 1812.
Learn more about law of conservation of energy,here:
#SPJ2
Answer:
-3.19x10³ J
Explanation:
Since the surroundings absorbed 3.19 × 10³ J (or 3190 J) of heat, the system, or the dissolution reaction, must have lost the same amount of heat. The heat for the system, then, is -3.19 × 10³ J (or -3190 J). We know this is true because of the first law of thermodynamics, "heat is a form of energy, and thermodynamic processes are therefore subject to the principle of conservation of energy".
Answer:
0.2 moles of CO₂ are produced
Explanation:
Given data:
Moles of CO₂ produced = ?
Moles of Na₂CO₃ react = 0.2 mol
Solution:
Chemical equation:
Na₂CO₃ + 2HCl → 2NaCl + CO₂ + H₂O
Now we will compare the moles of CO₂ with Na₂CO₃ .
Na₂CO₃ : CO₂
1 : 1
0.2 : 0.2
Thus, 0.2 moles of CO₂ are produced.
Answer: The daughter nuclei is
Explanation:
Electron capture is defined as the process in which an electron is drawn to the nucleus where it combines with a proton to form a neutron and a neutrino particle.
The chemical equation for the reaction of electron capture of Zinc-63 nucleus follows:
The parent nuclei in the above reaction is Zinc-63 and the daughter nuclei produced in the above reaction is copper-63 nucleus.
Hence, the daughter nuclei is
When Zinc-63 undergoes electron capture, it results in the creation of a Copper-63 daughter nucleus. This is due to the atomic number decreasing by one (from 30 to 29) during electron capture, but the mass number remaining unchanged.
Electron capture is a process where a proton-rich nucleus absorbs an inner shell electron, which results in a conversion of a proton into a neutron, and the emission of an electron neutrino. In doing so, the atomic number decreases by one, while the mass number stays the same. Therefore, in the case of 63 Zn (zinc-63), the atomic number is 30 prior to electron capture. After electron capture, the atomic number will decrease by one to become 29, leading to the production of 63 Cu (copper-63).
Remember that the atomic number (bottom number), also known as the proton number, determines the element. Therefore, in our example, Zn changes to Cu. The fact that the mass number (top number) remains the same is due to the total number of protons and neutrons (nucleons) being conserved.
#SPJ11