Answer:
Molarity= 4M
Explanation:
n= CV
24= C×6,
C= 24/6 = 4M
Answer:4M
Explanation:
Number of moles=24
Volume=6L
Molarity=number of moles ➗ volume
Molarity=24 ➗ 6
Molarity=4M
Answer:
Coconut oil, Olive oil and Sunflower oil
Explanation:
Fatty acids are carboxylic acids with a long unbranched chain of carbon and hydrogen atoms.
There are three main classes of fatty acids which are explained as under:
1. Saturated Fatty acids: These fatty acids have long carbon chain with two hydrogen atoms bonded to each carbon atom. This saturation of fatty acids make the fatty acids more stable towards high temperature. These fatty acids becomes solid at room temperature. Coconut oil and butter are the examples of saturated fatty acids.
2. Monounsaturated Fatty Acids: In a long carbon chain, if there is a carbon atom which is double bonded with another carbon atom and rest is saturated with hydrogen atoms, because of this single double-bond, the fatty acid is termed as monounsaturated fatty acids. These fatty acids are liquid at room temperature but solidify in refrigerator. Olive oil is an example of such fatty acids.
3. Polyunsaturated Fatty Acids: In a long carbon chain, if there are two or more than two carbon atoms which are double bonded with each other and rest is saturated with hydrogen atoms, because of multiple double bonds, such fatty acids are termed as polyunsaturated fatty acids. Because of higher unsaturation, these fatty acids are liquid in both normal room temperature and in refrigerator. Such unsaturation also make them unfit for cooking purposes. Sunflower oil, Soyabean oil and Flaxseed oil are examples of polyunsaturated fatty acids.
Answer: The value of for the reaction is
Explanation:
We are given:
Initial moles of
Initial moles of
Volume of the container = 1.00 L
Molarity of the solution =
The given chemical equation follows:
Initial: 0.0150 0.0150
At eqllm: 0.0150-4x 0.0150-3x 2x 6x
The expression of for above equation follows:
.......(1)
We are given:
Equilibrium concentration of
Equating the equilibrium concentrations of nitrogen, we get:
Calculating the equilibrium concentrations:
Concentration of
Concentration of
Concentration of
Concentration of
Putting values in expression 1, we get:
Hence, the value of for the reaction is
To calculate the equilibrium constant, Kc, for the reaction that produces HNO3 from NH3 and O2, you need to determine the equilibrium concentrations of NH3 and O2. The given information includes the initial moles and concentration of NH3 and O2, as well as the equilibrium concentration of N2. Using the stoichiometry of the reaction and the given data, you can calculate the equilibrium concentrations and substitute them into the Kc expression to determine the numerical value of Kc.
The question asks to calculate the equilibrium constant, Kc, for the reaction that produces HNO3 from NH3 and O2. The reaction equation is 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) + 6 H2O(g). The given information is that 0.0150 mol of NH3(g) and 0.0150 mol of O2(g) are placed in a 1.00-L container, and the N2 concentration at equilibrium is 1.96 × 10−3 M. To solve for Kc, we need to calculate the equilibrium concentrations of NH3 and O2.
Using the stoichiometry of the reaction, we can determine that the equilibrium concentration of NH3 is (0.0150 - 2*1.96 × 10−3) M and the equilibrium concentration of O2 is (0.0150 - 3*1.96 × 10−3) M. Substituting these values into the equilibrium expression for Kc, we can calculate the value of Kc.
In this case, the equilibrium constant, Kc, can be calculated as [N2]^2 / ([NH3]^4 * [O2]^3). Substitute the given equilibrium concentration of N2 and the calculated equilibrium concentrations of NH3 and O2 into the Kc expression to determine the numerical value of Kc.
#SPJ11
The molar mass of Fe2(SO3)3 is 351.8796 moles.
Molar mass is defined as the mass equivalent of an element's or a chemical compound's Avogadro number of atoms or molecules, respectively. A mole is defined as the quantity of atoms, molecules, or ions that are present in a substance. It is additionally referred to as the volume of material that contains the same number of discrete units.
Molar mass of Fe2(SO3)3
= 2 × 55.845 + 3 × 32.065 + 9 × 15.9994
= 111.69 + 96.195 + 143.9946
= 351.8796 moles.
The substance iron(III) sulfite, sometimes known as ferrous sulfite, has the chemical formula Fe2(SO3)3. The family of inorganic compounds known as iron(III) Sulphate, sometimes known as ferric Sulphate, has the formula Fe2(SO4)3(H2O)n.
Thus, the molar mass of Fe2(SO3)3 is 351.8796 moles.
To learn more about molar mass, refer to the link below:
#SPJ2
Answer:
The molar mass and molecular weight of Fe2(SO3)3 is 351.8796.
Answer:
35.6 g of W, is the theoretical yield
Explanation:
This is the reaction
WO₃ + 3H₂ → 3H₂O + W
Let's determine the limiting reactant:
Mass / molar mass = moles
45 g / 231.84 g/mol = 0.194 moles
1.50 g / 2 g/mol = 0.75 moles
Ratio is 1:3. 1 mol of tungsten(VI) oxide needs 3 moles of hydrogen to react.
Let's make rules of three:
1 mol of tungsten(VI) oxide needs 3 moles of H₂
Then 0.194 moles of tungsten(VI) oxide would need (0.194 .3) /1 = 0.582 moles (I have 0.75 moles of H₂, so the H₂ is my excess.. Then, the limiting is the tungsten(VI) oxide)
3 moles of H₂ need 1 mol of WO₃ to react
0.75 moles of H₂ would need (0.75 . 1)/3 = 0.25 moles
It's ok. I do not have enough WO₃.
Finally, the ratio is 1:1 (WO₃ - W), so 0.194 moles of WO₃ will produce the same amount of W.
Let's convert the moles to mass (molar mass . mol)
0.194 mol . 183.84 g/mol = 35.6 g
Round your final answer to three significant figures.
Type your answer...
Answer:
25.3889 m/s
Explanation:
We can simply write 91.4km/hr as,
91.4km
1 hr
=91400m
60 s × 60 s
=91400m
3600 s
= 25.3889 m/s
Technically, there are an infinite number of possible amino acids, though we've found only 20 common ones that many organisms use and at least half a dozen obscure ones that specific organisms use. We focus only on the 20 common ones unless we're in a college level biochemistry course.
The three categories are nonpolar ones, polar ones, and charged ones. The nonpolar ones have non-polar side chains (no oxygens or nitrogens), the polar ones have polar side chains (most contain an OH group but no COOH group), the charged ones are either acidic or basic (has COOH group or a basic nitrogen).