Answer:
Hey
Explanation:
Answer:
it A
Explanation:
Its a negative ion that hss one less valence electron than a netural bromine atom
Answer:
Check attachment for better understanding
Explanation:
Given that,
Current in wire I =2.2A
Capacitor plate dimension is 2cm by 2cm
s=2cm=2/100 = 0.02m
Rate at which electric field Is changing dE/dt?
The current in the wires must also be the displacement current in the capacitor. We find the rate at which the electric field is changing from
ID = ε0•A•dE/dt
Where ε0 is a constant
ε0= 8.85×10^-12C²/Nm²
Area of the square plate is
A =s² =0.02² = 0.0004m²
Then,
Make dE/dt the subject of formula
dE/dt = ID/ε0A
dE/dt = 2.2 / (8.85×10^-12 ×4×10^-4)
dE/dt = 6.215×10^14 V/m-s
Or
dE/dt = 6.215×10^14 N/C.s
The rate at which the electric field is changing between the plates is 6.215×10^14 N/C.s
Answer:
ωB = 300 rad/s
ωC = 600 rad/s
Explanation:
The linear velocity of the belt is the same at pulley A as it is at pulley D.
vA = vD
ωA rA = ωD rD
ωD = (rA / rD) ωA
Pulley B has the same angular velocity as pulley D.
ωB = ωD
The linear velocity of the belt is the same at pulley B as it is at pulley C.
vB = vC
ωB rB = ωC rC
ωC = (rB / rC) ωB
Given:
ω₀A = 40 rad/s
αA = 20 rad/s²
t = 3 s
Find: ωA
ω = αt + ω₀
ωA = (20 rad/s²) (3 s) + 40 rad/s
ωA = 100 rad/s
ωD = (rA / rD) ωA = (75 mm / 25 mm) (100 rad/s) = 300 rad/s
ωB = ωD = 300 rad/s
ωC = (rB / rC) ωB = (100 mm / 50 mm) (300 rad/s) = 600 rad/s
Displacement means when you move something from its original position. Let's say you want to sit on a chair. You move the chair from where it was originally placed. That's displacement.
Answer:
True
Explanation:
This is a representation of Gauss law.
Gauss’s law does hold for moving charges, and in this respect Gauss’s law is more general than Coulomb’s law. In words, Gauss’s law states that: The net outward normal electric flux through any closed surface is proportional to the total electric charge enclosed within that closed surface. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss’s theorem.