A 50-gram ball is released from rest 80 m above the surface of the Earth. During the fall to the Earth, the total thermal energy of the ball and the air in the system increases by 15 J. Just before it hits the surface its speed is

Answers

Answer 1
Answer:

Answer:

Speed of ball just before it hit the surface is 31.62 m/s .

Explanation:

Given :

Mass of ball , m = 50 g = 0.05 kg .

Height from which it falls , h = 80 m .

Thermal energy , E = 15 J .

Now , Initial energy of the system is :

E_i=(mv^2)/(2)+mgh

Here , initial velocity is zero .

Therefore , E_i=mgh=40\ J

Now , final energy of the system :

E_f=(mv^2)/(2)+mg(0)+15\n\nE_f=(0.05* v^2)/(2)+15

Since , no external force is applied .

Therefore , total energy of the system will be constant .

By conservation of energy :

E_i=E_f\n40=(0.05v^2)/(2)+15\n\n25=(0.05v^2)/(2)\n\nv=31.62\ m/s

Therefore , speed of ball just before it hit the surface is 31.62 m/s .

Answer 2
Answer:

Final answer:

Using the principle of conservation of energy, the speed of the ball just before hitting the Earth's surface is found to be 79.2 m/s after accounting for the 15 J increase in thermal energy.

Explanation:

This question is concerned with the concept of conservation of energy, specifically the principles of potential and kinetic energy. When the ball is 80 meters above the Earth's surface, the total gravitational potential energy is m*g*h = 50g*9.8m/s²*80m = 39200 J (where m is mass, g is gravity, and h is height), and the kinetic energy is 0.

As the ball falls, its potential energy gets converted into kinetic energy, but we also know that the total thermal energy of the ball and the air in the system increases by 15 J. That means that not all the potential energy is converted into kinetic energy, 15 J is lost to thermal energy. So, the kinetic energy of the ball when it hits the Earth is 39200 J - 15 J = 39185 J.

Finally, we know that kinetic energy equals (1/2)*m*v², where v is the speed of the ball. Rearranging this formula to solve for v we get, v = sqrt((2*kinetic energy)/m) = sqrt((2*39185 J)/50g) = 79.2 m/s. So, just before the ball hits the surface, its speed is 79.2 m/s.

Learn more about Potential and Kinetic Energy here:

brainly.com/question/15764612

#SPJ12


Related Questions

What is the magnitude and direction of the electric field atradiaConsider a coaxial conducting cable consisting of a conductingrod of radius R1 inside of a thin-walled conducting shell of radius 2(both are infinite length). Suppose the inner rod hasradiusR1= 1.3 mm and outer shell has radiusR2= 10R1Ifthe net charge density on the center rod isq1= 3.4×10−12C/mand the outer shell isq2=−2q1,a.)What is the magnitude and direction of the electric field atradial distancer= 5R1from the center rod
A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg, which is required to travel upward 35 m in 3.5 min, starting and ending at rest. The elevator's counterweight has a mass of only 940 kg, so the elevator motor must help pull the cab upward. What average power is required of the force the motor exerts on the cab via the cable
Two wooden boxes of equal mass but different density are held beneath the surface of a large container of water. Box A has a smaller average density than box B. When the boxes are released, they accelerate upward to the surface. Which box has the greater acceleration?
Nitrogen makes up about what percent of a human's body weight?
A 84-kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of 1.2 m/s in 0.73 as. The elevator travels with this constant speed for 5.0 s, undergoes a uniform negative acceleration for 1.4 s, and then comes to rest.What does the spring scale register During the first 0.80s of the elevator’s ascent?

The main force(s) acting on the puck after receiving the kick is (are):_________.A) a downward force of gravity and an upward force exerted by the surfaceB) a downward force of gravity, and a horizontal force in the direction of motionC) a downward force of gravity, an upward force exerted by the surface, and a horizontal force in the direction of motionD) a downward force of gravityA) a downward force of gravity and an upward force exerted by the surface

Answers

Answer:

the statements, the correct one is A

a downward force of gravity and an upward force exerted by the surface

Explanation:

When the disc is hit, a thrust force is exerted in the direction of movement, at the moment the disc moves this force loses contact and becomes zero.

When the movement is already established there are two main forces: gravity that acts downwards and the reaction force to the support of the disk called normal that acts upwards.

As it is not mentioned that there is friction, this force that opposes the movement is zero.

Analyzing the statements, the correct one is A

A golf ball is dropped from rest from a height of 9.50 m. It hits the pavement, then bounces back up, rising just 9.70 m before falling back down again. A boy catches the ball on the way down when it is 1.20 m above the pavement. Ignoring air resistance calculate the total amount of time the ball is in the air, from drop to catch?

Answers

The ball is in the air for 27.70m because
9.5+9.7=19.2...
9.7-1.2=8.5...
19.2+8.5=27.70...

A charge Q = 1.96 10-8 C is surrounded by an equipotential surface with a surface area of 1.18 m2. what is the electric potential at this surface?

Answers

Answer:

V = 575.6 Volts

Explanation:

As we know that surface area of the equi-potential surface is given as

A = 1.18 m^2

so we will say

A = 4\pi r^2

1.18 = 4\pi r^2

r = 0.31 m

Now the potential due to a point charge is given as

V = (kQ)/(r)

V = ((9* 10^9)(1.96 * 10^(-8)))/(0.31)

V = 575.6 Volts

A paper airplane moving 2.33 m/s has 0.161 J of KE. What is its mass? (Unit = kg)

Answers

The kinetic energy of an object is given by:

KE = 0.5mv²

KE = kinetic energy, m = mass, v = speed

Given values:

KE = 0.161J, v = 2.33m/s

Plug in and solve for m:

0.161 = 0.5m(2.33)²

m = 0.059kg

Suppose you are pushing on a crate across a floor as shown below. Assume the friction force is 47.0 N. How much time will it take for the crate to reach 6.0 m/s if it started from rest? Assume the weight of the crate is 2058 N. (250 N force applied)(Question is no longer a priority but i’d like to know the answer and how it’s found) pls don’t scam i’m serious man i need to know

Answers

Answer:

6.2 seconds

Explanation:

Using Newton's second law, ∑F=ma, we know the net force acting on the object is Force applied-Force of friction. The net force is 203 N. Newton's second law requires the mass of an object, not the weight force, so we will have to calculate the mass. We know that m*g=weight force,  in this case, solve for the mass and you will get 210 kg. Now that we have the value of the net force and the mass, we can solve for acceleration. (F)/(m)=a=0.967 m/s^2. Now, since we have the acceleration, initial velocity(0 m/s), and the final velocity (6m/s) we will use these to solve for time using the kinematic equation Vf=Vi + at. Plug in the values we know and solve for time and you will get 6.2 seconds

So to deal with the irrational belief in REBT, we must Group of answer choices

A. Consult with a friend and get their feeback

B. Dispute the beliefs by asking if these are true and examining the evidence

C. Seek mental health counseling

D. It is just too hard so let's just forget it.

Answers

Answer:

i believe the answer is B

Explanation:

Seeking the right answer is the best thing to do