The steps in a reaction mechanism are as follows. Which species is acting as a catalyst? Step 1: Ag+(aq) + Ce4+(aq) <-----> Ag2+(aq) + Ce3+(aq) Step 2: Tl+(aq) + Ag2+(aq) -----> Tl2+(aq) + Ag+(aq) Step 3: Tl2+(aq) + Ce4+(aq) -----> Tl3+(aq) + Ce3+(aq)

Answers

Answer 1
Answer:

The specie which is acting as a catalyst is; Ag+(aq).

Discussion:

The catalyst is a specie that exists in the same form at the beginning and end of the reaction.

The reaction's mechanism is as follows;

  • Step 1: Ag+(aq) + Ce⁴+(aq) <-----> Ag²+(aq) + Ce³+(aq)

  • Step 2: Tl+(aq) + Ag²+(aq) -----> Tl²+(aq) + Ag+(aq)

  • Step 3: Tl²+(aq) + Ce⁴+(aq) -----> Tl³+(aq) + Ce³+(aq)

Evidently, although Ag+(aq) was converted to Ag²+(aq) in Step 1 of the reaction; the Ag²+(aq) is reverted back to Ag+(aq) in Step 2 of the reaction.

Read more:

brainly.com/question/22498090

Answer 2
Answer:

Answer:

Ag⁺ acts as the catalyst.

Explanation:

Hello,

In this case, each step is reorganized:

- Step 1:

Ag^+(aq) + Ce^(4+)(aq) \rightleftharpoons Ag^(2+)(aq) + Ce^(3+)(aq)

- Step 2:

Tl^+(aq) + Ag^(2+)(aq) \rightarrow  Tl^(2+)(aq) + Ag^+(aq)

- Step 3:

Tl^(2+)(aq) + Ce^(4+)(aq) \longrightarrow Tl^(3+)(aq) + Ce^(3+)(aq)

In such a way, Ag⁺ is converted to Ag²⁺ in the first step, but then it is regenerated to simple Ag⁺, therefore, Ag⁺ acts as the catalyst.

Best regards.


Related Questions

What pressure is exerted on the bottom of a 0.500-m-wide by 0.900-m-long gas tank that can hold 50.0 kg of gasoline by the weight of the gasoline in it when it is full?
Lithium (Li) has a charge of +1, and oxygen has a charge of -2. Which is the chemical formula?
Fruits and vegetables exposed to air begin to brown because of a chemical reaction in their cells. This may result in these foods being thrown out. Some people have found that adding lemon juice (citric acid) to apple slices keeps them from turning brown. The prevention of browning is likely the result of *increasing the concentration of enzymesincrease in the temperatureslowing the rate of enzyme reactionmaintaining the pH
Which one of the following will have the higher boiling point: 1-pentanol or hexane? (BLB Ch. 11)
For the combustion reaction of C9H12 in O2: how many moles of O2 is required to react with 0.67 mol C9H12?

How much energy in joules does it take to raise the temperature of 255g of water by 12.5C

Answers

Energy in a system can be calculated by multiplying the given mass to thespecific heat capacity of the substance and the temperature difference. It isexpressed as follows:

Energy = mC(T2-T1)
Energy = 255(4.184)(12.5)
Energy = 13336.5 J

Answer: The amount of energy required to raise the temperature is 13323.75 joules.

Explanation :

The amount of energy required to raise the temperature can be calculated as follows.

                   q = m* C* \bigtriangleup T

where,

        q = heat energy

        m = mass of water

         C = specific heat

          T = temperature

Remember that the specific heat of water is 4.18\left ( (J)/(g^\circ C)} \right ).

Therefore, putting the values in the above equation as follows.

        q = m* C* \bigtriangleup T

           = 255 g * 4.18 \left ( (J)/(^\circ C)} \right )* 12.5^oC

         = 13323.75 joules

So, the amount of energy required to raise the temperature is 13323.75 joules.


What is the final step in the scientific method

Answers

Conclusion
 
Hope this helps!
Once a hypothesis has been formed, it must be tested. This is done by conducting a carefully designed and controlled experiment. The experiment is one of the most important steps in the scientific method, as it is used to prove a hypothesis right or wrong, and to formulate scientific theories.

Partc. explain why equal volumes of 0.1 m ch3cooh and 0.1 m nach3co2 function as a buffer solution, but equal volumes of 0.1 m hcl and 0.1 m naoh do not.

Answers

Answer : As per the definition of the buffer solution "It is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa".

so considering the above given condition for 
CH_(3) COOH and NaCH_(3)CO_(2) act as buffer because it satisfies and qualifies the conditions of behaving as a buffer when mixed in equal amounts,

whereas HCl and NaOH are strong acid and strong base which does not satisfies the criteria for being called as buffer.

As buffer needs a weak acid and its conjugate base to behave and act as buffer and resist any pH change.

This experiment involves the reaction of Ba(OH)2 with H2SO4. Which of the following gives the balanced chemical reaction used in the experiment?Ba(OH)2 (aq) + H2SO4(aq) → H2Ba(s) + SO4(OH)2(l)

Ba(OH)2 (aq) + H2SO4(aq) → BaSO4(s) + H2O(l)

BaSO4(s) + 2 H2O(l) → Ba(OH)2 (aq) + H2SO4(aq)

Ba(OH)2 (aq) + H2SO4(aq) → BaSO4(s) + 2 H2O(l)

Answers

Answer:

Ba(OH)2 (aq) + H2SO4(aq) → BaSO4(s) + 2 H2O(l)

That's the right one.

Explanation:

You should see that this equation is balanced, not as

Ba(OH)2 (aq) + H2SO4(aq) → BaSO4(s) + H2O(l)

(on reactive we have 4 H, on products, we have only 2)

Ba(OH)2 (aq) + H2SO4(aq) → H2Ba(s) + SO4(OH)2(l)

(this is impossible, it's a nonsense)

BaSO4(s) + 2 H2O(l) → Ba(OH)2 (aq) + H2SO4(aq)

(it is the same with the right one but is the other way around. The statement says, reaction of Ba(OH)2 with H2SO4, not BaSO4 with water. Also, it is not a chemical balance.

A solution of HNO3HNO3 is standardized by reaction with pure sodium carbonate. 2H++Na2CO3⟶2Na++H2O+CO2 2H++Na2CO3⟶2Na++H2O+CO2 A volume of 27.71±0.05 mL27.71±0.05 mL of HNO3HNO3 solution was required for complete reaction with 0.9585±0.0007 g0.9585±0.0007 g of Na2CO3Na2CO3 , (FM 105.988±0.001 g/mol105.988±0.001 g/mol ). Find the molarity of the HNO3HNO3 solution and its absolute uncertainty.

Answers

Answer:

(0,653±0,002) M of HNO₃

Explanation:

The reaction of standarization of HNO₃ with Na₂CO₃ is:

2 HNO₃ + Na₂CO₃ ⇒ 2 Na⁺ + H₂O + CO₂ + 2NO₃⁻

To obtain molarity of HNO₃ we need to know both moles and volume of this acid. The volume is (27,71±0,05) mL and to calculate the moles it is necessary to obtain the Na₂CO₃ moles and then convert these to HNO₃ moles, thus:

0,9585 g of Na₂CO₃ × ( 1 mole / 105,988 g) =

9,043×10⁻³ mol Na₂CO₃ × ( 2 moles of HNO₃ / 1 mole of Na₂CO₃) = 1,809×10⁻² moles of HNO₃

Molarity is moles divide liters, thus, molarity of HNO₃ is:

1,809×10⁻² moles / 0,02771 L = 0,6527 M of HNO₃

The absolute uncertainty of multiplication is the sum of relative uncertainty, thus:

ΔM = 0,6527M× (0,0007/0,9585 + 0,001/105,988 + 0,05/27,71) =

0,6527 M× 2,54×10⁻³ = 1,7×10⁻³ M

Thus, molarity of HNO₃ solution and its absolute uncertainty is:

(0,653±0,002) M of HNO₃

I hope it helps!

Describe the range of radii of most atoms in nanometers (nm)

Answers

Final answer:

The range of radii of most atoms is typically in the nanometer scale (nm) and can be measured using the covalent radius. The size of an atom's nucleus is much smaller than the atom itself. The Bohr model provides a formula to calculate the radius of hydrogen-like atoms.

Explanation:

The range of radii of most atoms is typically in the nanometer scale (nm). The covalent radius, which is defined as half the distance between the nuclei of two identical atoms when they are joined by a covalent bond, provides a practical way to measure the size of atoms. As we move down a group in the periodic table, the covalent radius generally increases, indicating a larger size of the atom. For example, the covalent radius of the halogens increases as we move from fluorine to iodine.

The size of an atom's nucleus, on the other hand, is much smaller than the atom itself. The nucleus has a diameter of about 10-15 meters, while the typical atom has a diameter of the order of 10-10 meters. This difference in size illustrates the emptiness of atoms, with the distance from the nucleus to the electrons being typically 100,000 times the size of the nucleus.

The Bohr model provides a formula to calculate the radius of hydrogen-like atoms, which depends on the principal quantum number (n) and the atomic number (Z). The calculated radii of the orbits of the hydrogen atom have been experimentally verified to have a diameter of a hydrogen atom.

Learn more about Atomic Radii here:

brainly.com/question/3588338

#SPJ12

Final answer:

The range of radii of most atoms is typically measured in nanometers (nm). Covalent radius and hydrogen-like orbits are two methods used to estimate the size of atoms. The size of an atom can vary depending on the element and measurement technique, but most atoms have radii on the order of nanometers (nm).

Explanation:

The range of radii of most atoms is typically measured in nanometers (nm). The size of an atom can be estimated using various techniques. One commonly used measure is the covalent radius, which is defined as one-half the distance between the nuclei of two identical atoms when they are joined by a covalent bond. The covalent radii of different elements can be found in tables and can vary depending on the element and its position in the periodic table.

Another way to estimate the size of atoms is by looking at the sizes of their orbits in hydrogen-like atoms. These orbits are given in terms of their radii by a mathematical expression that includes a constant called the Bohr radius, which is approximately 5.292 × 10-11 m.

Overall, the size of an atom can vary depending on the element and the specific measurement technique used, but most atoms have radii on the order of nanometers (nm).

Learn more about Sizes of Atoms here:

brainly.com/question/11209215

#SPJ12