An object of mass m moves to the right with a speed v. It collides head-on with an object of mass 3m moving with speed v/3 in the opposite direction. If the two objects stick together, what is the speed of the combined object, of mass 4m, after the collision

Answers

Answer 1
Answer:

The speed of the combined object after collision is 0 m/s.

Total momentum before collision = total momentum after collision

m₁u₁ + m₂u₂ = (m₁ + m₂)a

m₁ = object 1 mass = m, u₁ = velocity of object 1 before collision = v, m₂ = mass of object 2 = 3m, u₂ = velocity of object 2 before collision = -v/3, a = velocity after collision

mv + 3m(-v/3) = (m + 3m)a

mv - mv = 4ma

0 = 4ma

a = 0 m/s

The speed of the combined object after collision is 0 m/s.

Find out more at: brainly.com/question/17166755

Answer 2
Answer:

Answer:

the answer is 0 m/s

Explanation:

This question is describing the law of conservation of momentum

First object has mass =m

velocity of first object = v

second object = 3m

velocity of second object = v/3

the law of conservation of momentum is expressed as

m1V1 - m2V2 = (m1+ m2) V

substituting the parameters given;

making V as the subject of formular

V =(m_(1 ) V_(1) -m_(2)V_(2)  )/(m_(1)+m_(2)  )

V =

(mV - 3mv/3)/(m+ 3m)

V =(0)/(4m)

= 0 m/s


Related Questions

Air contains 78.08% nitrogen, 20.095% oxygen, and 0.93% argon. calculate the partial pressure of oxygen if the total pressure of the air sample is 1.7 atm.a.
When some stars use up their fuel, they undergo a catastrophic explosion called a supernova. This explosion blows much or all of a star's mass outward, in the form of a rapidly expanding spherical shell. As a simple model of the supernova process, assume that the star is a solid sphere of radius R that is initially rotating at 2.4 revolutions per day. After the star explodes, find the angular velocity, in revolutions per day, of the expanding supernova shell when its radius is 4.3R. Assume that all of the star's original mass is contained in the shell.
6. As distance increases, gravitational force *(10 Points)increasesdecreases
A child attaches a 0.6 kg toy to a 0.9 meter length of string and spins it around in uniform circular motion. Calculate the tension in the string if the period of rotation is 4.1 seconds.
Since the density of air decreases with an increase in temperature, but the bulk modulus B is nearly independent of temperature, how would you expect the speed of sound waves in air to vary with temperature?

Light from a lamp is shining on a surface. How can you increase the intensity of the light on the surface? Light from a lamp is shining on a surface. How can you increase the intensity of the light on the surface? A. Use a lens to focus the power into a smaller area. B. Increase the power output of the lamp. C. Either A or B.

Answers

Answer:

the correct option is C

Explanation:

The intensity of a lamp depends on the power of the lamp that is provided by the current flowing over it, therefore the intensity would increase if we raise the current.

Another way to increase the intensity is to decrease the area with a focusing lens, as the intensity is power over area, decreasing the area increases the power.

When we see the possibilities we see that the correct option is C

2. Annealed low-carbon steel has a flow curve with strength coefficient of 75000 psi and strain-hardening exponent of 0.25. A tensile test specimen with a gauge length of 2 in. is stretched to a length of 3.3 in. Determine the flow stress and the average flow stress that the metal experienced during this deformation.

Answers

Answer:

Flow stress= 9390Psi

Average flow stress= 4173.33Psi

Explanation:

Given:

Strength Coefficient = 75000psi

Strain hardening Exponent = 0.25

Gauge length = 2inches

Stretch length = 3.3 inches

Flow stress,Yf = 75000 × ln(3.3/2) × 0.25

Yf = 75000× ln(1.65) × 0.25

Yf = 75000× 0.5008 × 0.25

Flow stress = 9390Psi

Average flow stress = 75000× 0.5008 × (0.25/2.25)

Average flow stress= 4173.33psi

A current-carrying wire is bent into a circular loop of radius R and lies in an xy plane. A uniform external magnetic field B in the +z direction exists throughout the plane of the loop. The current has the magnitude of I and it is deirected counterclockwise when observing from positive z axis.What is the magnetic force exerted by the external field on the loop?Express your answer in terms of some or all of the variables I, R, and B

Answers

Final answer:

The net magnetic force exerted by the external magnetic field on a current-carrying wire formed into a loop in a uniform magnetic field is absolutely zero since the individual forces on each section of the loop cancel each other out.

Explanation:

The force exerted by a magnetic field on a current carrying wire is given by Lorentz force law, which says that the force is equal to the cross product of the current and the magnetic field. However, in this case, where the wire is formed into a loop with current flowing in a counter-clockwise direction in presence of an external magnetic field, the individual forces on each infinitesimal section of the loop cancel each other out. Therefore, the net magnetic force exerted by the external field on the entire loop is zero.

Learn more about Magnetic Force here:

brainly.com/question/10353944

#SPJ12

Final answer:

The magnetic force exerted on a current-carrying wire loop by an external magnetic field can be calculated using the equation F = I * R * B.

Explanation:

The magnetic force exerted by the external field on the current-carrying wire loop can be determined using the equation F = I * R * B. The magnetic force is equal to the product of the current, radius, and magnetic field strength. The direction of the magnetic force can be determined using the right-hand rule, where the thumb represents the direction of the current, the fingers represent the magnetic field, and the palm represents the direction of the force.

Learn more about Magnetic force on wire loop here:

brainly.com/question/31234642

#SPJ12

Telephone signals are often transmitted over long distances by microwaves. What is the frequency of microwave radiation with a wavelength of 3.5 cm?Express your answer in GHz and using two significant figures.
f = ________GHz
Microwave signals are beamed between two mountaintops 52 km apart. How long does it take a signal to travel from one mountaintop to the other?
Express your answer in ms and using two significant figures.
t = ________ms

Answers

Answer:

1) f= 8.6 GHz

2) t= 0.2 ms

Explanation:

1)

  • Since microwaves are electromagnetic waves, they move at the same speed as the light in vacuum, i.e. 3*10⁸ m/s.
  • There exists a fixed relationship between the frequency (f) , the wavelength (λ) and the propagation speed in any wave, as follows:

        v = \lambda * f (1)

  • Replacing by the givens, and solving for f, we get:

       f =(c)/(\lambda) =(3e8m/s)/(0.035m) = 8.57e9 Hz (2)

⇒     f = 8.6 Ghz (with two significative figures)

2)

  • Assuming that the microwaves travel at a constant speed in a straight line (behaving like rays) , we can apply the definition of average velocity, as follows:

       v =(d)/(t) (3)

       where v= c= speed of light in vacuum = 3*10⁸ m/s

       d= distance between mountaintops = 52 km = 52*10³ m

  • Solving for t, we get:

       t = (d)/(c) = (52e3m)/(3e8m/s) = 17.3e-5 sec = 0.173e-3 sec = 0.173 ms (4)

       ⇒  t = 0.2 ms (with two significative figures)

Calculate a pendulum's frequency of oscillation (in Hz) if the pendulum completes one cycle in 0.5 s.

Answers

Time taken to complete one oscillation for a pendulum is Time Period, T = 0.5 s 
Frequency of the pendulum oscillation = 1 / Time Period => f = 1 / T = 1 / 0.5  
Frequency f = 2 Hz

What is the magnifying power of an astronomical telescope using a reflecting mirror whose radius of curvature is 5.5 mm and an eyepiece whose focal length is 2.9 cmcm ? Follow the sign conventions.

Answers

The magnifying power of an astronomical telescope will be:

"0.095".

Telescope: Focal length and Power

According to the question,

Radius of curvature, R = 5.5 mm

Focal length of eyepiece, F_e = 2.9 cm

We know that,

→ Focal length of mirror,

F₀ = (Radius \ of \ curvature)/(2)

By substituting the values,

    = (5.5)/(2)

    = 2.75 mm or,

    = 0.278 cm

hence,

The telescope's magnification be:

= (F_0)/(F_e)

= (0.275)/(2.9)

= 0.095

Thus the above approach is correct.

Find out more information about magnification here:

brainly.com/question/1477543

Answer:

0.095

Explanation:

An astronomical telescope is a telescope used for viewing far distance object. It uses two lenses called the objective lens and the eyepiece lens.

Each lens has its own focal length

Let the focal length of the objective lens be Fo

Focal length of the eyepiece be Fe

Magnification of an astronomical telescope = Fo/Fe

Since the telescope uses a reflecting mirror having radius of curvature of 5.5mm instead of an objective lens, then we will replace Fo as the focal length of the mirror.

Focal length of a mirror Fo = Radius of curvature/2

Fo = R/2

Fo = 5.5/2

Fo = 2.75mm

Converting 2.75mm to cm gives 2.75/10 = 0.275cm

Fo = 0.275cm; Fe = 2.9cm

Magnification of the telescope = 0.275/2.9

Magnification of the astronomical telescope = 0.095