Answer: The property which depends on the quantity of the substance is called an extensive property. The free energy change for a reaction (Δ G) depends on the quantity of the substance and is therefore an extensive property. It shows the additive nature. The extensive property Δ G is easily calculated from the formula, ΔG = -nFE cell.
Explanation:
An extensive property is one that changes when the size of the sample changes. One such property that can be calculated is enthalpy. Enthalpy can be calculated using the formula H = E + PV.
An extensive property is a property that changes when the size of the sample changes. Examples include mass, volume, length, and total charge. One extensive property that can be calculated is enthalpy.
The enthalpy of a system can be calculated using the formula H = E + PV, where H represents the enthalpy, E the internal energy of the system, P the pressure, and V the volume. Like other extensive properties, the enthalpy of a system would change with the quantity or size of the sample.
#SPJ3
Answer: 1.63 moles
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number of particles.
To calculate the moles, we use the equation:
Given mass = 223 g
Molar mass = 136.4
Thus there are 1.63 moles in 223 g of the compound.
proton in scientific notation?
Answer:
1.67 ×10^-24g
Explanation:
counting from the first digit after the point till I got to the first non zero digit
Answer:
Explanation:
I need more information to answer this question and a better figure.
1. What is the frequency of the NMR machine?
Possible solution:
1. coupling constant Jab (in ppm) is given by
\nu_{a} - \nu_{b} = 4J_{ab}
2. Jab (in ppm) * Frequency of machine in (MHz)/106 is Jab in Hz
3. for cis vicinal Hydrogen Jab = 6-14 Hz
4. for trans vicinal Hydrogens Jab = 11-18 Hz
Now, considering 2 doublets are centered at 7.14 and 7.28 ppm , it gives
7.14 -7.28 = 4 Jab
thus, Jab = 0.07 ppm
Now if we consider a 100 MHz machine,
Jab = 7 Hz , thus indicating cis product
but if machine is 300 MHz
then Jab = 21 Hz , thus indicating a trans product.
But, most probably I feel it is a trans product. I hope it helps.
Answer: 0.1304M
Explanation: Please see the attachments below
The concentration of acetic acid in the solution is 0.1304 M.
To determine the concentration of acetic acid in solution, we can use the concept of stoichiometry and the balanced chemical equation for the reaction between acetic acid and sodium hydroxide. The balanced equation is:
CH3CO2H + NaOH -> CH3CO2Na + H2O
From the balanced equation, we can see that 1 mole of acetic acid reacts with 1 mole of sodium hydroxide. In order to calculate the moles of acetic acid, multiply the volume of NaOH used (16.3 mL) by the molarity of NaOH (0.20 M), then divide the result by 1000 to convert mL to L:
Moles of acetic acid = (16.3 mL NaOH x 0.20 M NaOH) / 1000 = 0.00326 moles
Now, to calculate the concentration of acetic acid in the solution, we divide the moles of acetic acid by the volume of the solution in litres:
Concentration of acetic acid = (0.00326 moles) / (25.0 mL x 1 L/1000 mL) = 0.1304 M
This means that the concentration of the acetic acid in the solution is 0.13M.
Learn more about Concentration of acetic acid here:
#SPJ3
Answer:
0.1775 M
Explanation:
The reaction that takes place is:
Where HA is the unknown weak acid.
At the equivalence point all HA moles are converted by NaOH. First we calculate how many NaOH moles reacted, using the given concentration and volume:
That means that in 4.00 mL of the weak acid solution, there were 0.71 weak acid mmoles. With that in mind we can now calculate the concentration: