Answer:
Ea =22542.6
Explanation:
The rate constant k is affected by the temperature and this dependence may be represented by the Arrhenius equation:
where the pre-exponential factor A is assumed to be independent of temperature, R is the gas constant, and T the temperature in K. Taking the natural logarithm of this equation gives:
ln k = ln A - Ea/(RT)
or
ln k = -Ea/(RT) + constant
or
ln k = -(Ea/R)(1/T) + constant
These equations indicate that the plot of ln k vs. 1/T is a straight line, with a slope of -Ea/R. These equations provide the basis for the experimental determination of Ea.
now applying the above equation in the problem
we can write that
solve for Ea:
Ea = R[Ln(k2/k1)] / [(1/T1) - (1/T2)]
but k_2 = 2 k_1, hence:
Ea = (8.314 J/moleK)[ln(2)] / [(1/273+45) - (1/273+73)]
Ea =22542.6
Answer:
The activation energy for this reaction is 22.6 kJ/ mol
Explanation:
Step 1: Data given
Rate constant doubles when Temperature goes from 45.0 °C to 73.0 °C
R = 8.314 J/K*mol
Step 2: Calculate the activation energy
Log (k2/k1) = Ea / 2.303R *((1/T1) - (1/T2))
⇒ with k1 = initial rate constant
⇒ with k2 = rate constant after doubled = 2k1
⇒ T1 = initial temperature = 45.0 °C = 318 Kelvin
⇒ T2 = Final temperature = 73.0 °C = 346 Kelvin
log (2) = Ea / (2.303*8.314) *((1/318) - (1/346))
log(2) = Ea / (2.303*8.314) * 0.00025448
Ea = 22649 J/mol = 22.6 kJ/mol
The activation energy for this reaction is 22.6 kJ/ mol
Answer:
30 grams
Explanation:
density = mass / volume => mass = density x volume
mass = 0.856 g/cm³ x 35 cm³ = 29.96 grams ≅ 30 grams 2 sig. figs.
OF2
CHCl3
H2O
Answer:
C6H6 has the strongest intermolecular force
i think
Answer:
H2O
Explanation:
Because it is a hydrogen bond which is said to be the strongest bond between the H and a N,O, or F combination
B. 2Ba (aq)
C. 2Ag (aq)
D. CI(aq)
Answer:
Option C
Explanation:
Consider the ionic equation of this chemical equation. We are given barium chloride and silver nitrate as the reactants, and silver chloride and barium nitrate as the products. We can thus conclude that the ionic equation ( not balanced yet ) should be as follows -
Ba( 2 + ) + Cl ( - ) + Ag ( + ) + NO3 ( - ) ------> AgCl + Ba( 2 + ) + NO3( - )
As you can see these compounds are present in aqueous solutions, and are thus dissociated.
______________________________________________________
Now let us take a look at the number of elements on the reactant and product sides, and balance this chemical equation out -
Ba( 2 + ) + 2Cl ( - ) + 2Ag ( + ) + 2NO3 ( - ) ------> 2AgCl + Ba( 2 + ) + 2NO3( - )
Solution = Option C!
Answer:
See Explanation
Explanation:
Pb2O3 is better formulated as PbO.PbO2. It is actually a mixture of the two oxides of lead, lead II oxide and lead IV oxide.
This implies that this compound Pb2O3 (sometimes called lead sesquioxide) is a mixture of the oxides of lead in its two known oxidation states +II and +IV.
Hence Pb2O3 contains PbO and PbO2 units.