Answer:
75
Explanation:
just took it e2020
Answer:
60%
Explanation:
efficiency= useful/input x 100%,
Here, kinetic energy is useful for food processor (i.e. spinning blades)
600J/1000J=60%
Explanation:
kinetic energy was converted to potential energy in the spring.
the answer is in the above image
Answer:
The description is outlined throughout the clarification section following, and according to the given word.
Explanation:
These radio waves travel at a speed of 3.00 x 108 m/s.
What is the wavelength of these radio waves?
The given situation is illustrated below. A particle is released and given a quick push. As a result, it acquires a speed v. Eventually, this particle ends up at the center of the original square and is momentarily at rest. If the mass of this particle is m, the initial speed of the particle is
To solve the problem, we need to apply the law of conservation of energy, which states that energy can neither be created nor destroyed; it can only be transformed from one form to another.
Initial potential energy = Final kinetic energy
The initial potential energy of the particle is given by
U = qV
where V is the potential difference between the corner and the center of the square.
At the center of the square, the potential energy is zero.
The final kinetic energy of the particle is given by
K = (1/2) mv^2
where m is the mass of the particle and v is its final velocity.
Since the particle is momentarily at rest at the center of the square, its final kinetic energy is zero.
Therefore, we have
qV = (1/2) mv^2
Solving for v, we get
v =
for such more question on speed
#SPJ11
To solve this problem we need to use the emf equation, that is,
Where E is the induced emf
I the current in the first coil
M the mutual inductance
Solving for a)
Solving for b) we need the FLux through each turn, that is
Where N is the number of turns in the second coil
Answer:
(a):
(b):
(c):
(d):
(e):
Explanation:
Given, the position of the particle along the x axis is
The units of terms and should also be same as that of x, i.e., meters.
The unit of t is seconds.
(a):
Unit of
Therefore, unit of
(b):
Unit of
Therefore, unit of
(c):
The velocity v and the position x of a particle are related as
(d):
The acceleration a and the velocity v of the particle is related as
(e):
The particle attains maximum x at, let's say, , when the following two conditions are fulfilled:
Applying both these conditions,
For ,
Since, c is a positive constant therefore, for ,
Thus, particle does not reach its maximum value at
For ,
Here,
Thus, the particle reach its maximum x value at time