Answer:
The skater's speed after she stops pushing on the wall is 1.745 m/s.
Explanation:
Given that,
The average force exerted on the wall by an ice skater, F = 120 N
Time, t = 0.8 seconds
Mass of the skater, m = 55 kg
It is mentioned that the initial sped of the skater is 0 as it was at rest. The change in momentum of skater is :
The change in momentum is equal to the impulse delivered. So,
So, the skater's speed after she stops pushing on the wall is 1.745 m/s.
Answer:
In parallel combination, the capacity of each capacitor is 11 F.
In series combination, the capacity of each capacitor is 44 F.
Explanation:
Let there are two capacitors each of capacitance C.
When they are connected in parallel:
In parallel combination, the effective capacitance is Cp.
Cp = C1 + C2 = C + C
22 = 2 C
C = 11 F
When they are connected in series:
In parallel combination, the effective capacitance is Cs.
1 / Cs = 1 / C1 + 1 / C2 = 1 / C + 1 / C = 2 / C
1 / 22 = 2 / C
C = 44 F
B No, the energy in the wave pushed the water particles from above the earthquake in the opposite direction.
C Yes, the water particles moved toward the island while the energy remained above the earthquake.
Here is the full question
Suppose there are 10,000 civilizations in the Milky Way Galaxy. If the civilizations were randomly distributed throughout the disk of the galaxy, about how far (on average) would it be to the nearest civilization?
(Hint: Start by finding the area of the Milky Way's disk, assuming that it is circular and 100,000 light-years in diameter. Then find the average area per civilization, and use the distance across this area to estimate the distance between civilizations.)
Answer:
1000 light-years (ly)
Explanation:
If we go by the hint; The area of the disk can be expressed as:
where D = 100, 000 ly
Let's divide the Area by the number of civilization; if we do that ; we will be able to get 'n' disk that is randomly distributed; so ;
The distance between each disk is further calculated by finding the radius of the density which is shown as follows:
replacing d = in the equation above; we have:
The distance (s) between each civilization =
= 2 (500 ly)
= 1000 light-years (ly)
Answer:
wavelength of the standing wave will be equal to 30 cm
Explanation:
We have given length of the guitar string L = 60 cm
Mass per unit length
Frequency is given f = 660 Hz
We have to find the wavelength of the standing wave
Length of the string will be 2 times of the wavelength of the wave
So
So wavelength of the standing wave will be equal to 30 cm
Answer:
F = 10.8N
Explanation:
Given the mass m = 0.4kg, v1 = 25m/s, v2 = 12m/s and t =0.5s
From Newtown's second law of motion the average force can be found. This law states that the product of the force experienced by a body and the time t of the force acting on the body is equal to the change in momentum of the body. Mathematically it can be stated as follows
FĂt = m(v2 â v1)
F = m(v2 â v1)/t = 0.4(25 â 12)/0.5 = 10.8N
Answer:
The image formed by a convex mirror will always have its smaller than the size of the object no matter what the position of the object.
Explanation:
The image formed by a convex mirror will always have its smaller than the size of the object no matter what the position of the object.
Also notice that convex mirror always makes virtual images.
Another feature of the convex mirror is that an upright image is always formed by the convex mirror.
An important mirror formula to remember which is applicable for both convex and mirrors
Here:
'u' is an object which gets placed in front of a spherical mirror of focal
length 'f' and image 'u' is formed by the mirror.
Answer:
right side up
Explanation: