In order to work well, a square antenna must intercept a flux of at least 0.040 N⋅m2/C when it is perpendicular to a uniform electric field of magnitude 5.0 N/C.

Answers

Answer 1
Answer:

Answer:

L > 0.08944 m or L > 8.9 cm

Explanation:

Given:

- Flux intercepted by antenna Ф = 0.04 N.m^2 / C

- The uniform electric field E = 5.0 N/C

Find:

- What is the minimum side length of the antenna L ?

Solution:

- We can apply Gauss Law on the antenna surface as follows:

                             Ф = \int\limits^S {E} \, dA

- Since electric field is constant we can pull it out of integral. The surface at hand is a square. Hence,

                             Ф = E.(L)^2

                             L = sqrt (Ф / E)

                             L > sqrt (0.04 / 5.0)

                             L > 0.08944 m

Answer 2
Answer:

Final answer:

The area of a square antenna needed to intercept a flux of 0.040 N⋅m2/C in a uniform electric field of magnitude 5.0 N/C is 0.008 m². Consequently, each side of the antenna must be about 0.089 meters (or 8.9 cm) long.

Explanation:

The question pertains to the relationship between electric field and flux. The electric flux through an area is defined as the electric field multiplied by the area through which it passes, oriented perpendicularly to the field.

We are given that the electric field (E) is 5.0 N/C and the flux Φ must be 0.040 N⋅m2/C.

Hence, to intercept this amount of flux, the antenna must have an area (A) such that A = Φ / E.

That is, A = 0.040 N⋅m2/C / 5.0 N/C = 0.008 m².

Since the antenna is square, each side will have a length of √(0.008) ≈ 0.089 meters (or 8.9 cm).

Learn more about Electric Flux here:

brainly.com/question/32826728

#SPJ3


Related Questions

Calculate the slope of the 25-coil line and the 50-coil line to determine the average number of paper clips that a 1 V battery would pick up.
Two students have the same velocity during a race. Colin has a mass of 80 kg while Kara has a mass of 80 kg. If Kara doubled her speed how does her new momentum compare to Colin’s?
When it is at rotating at full speed, a disk drive in a certain old computer game system revolves once every 0.050 seconds. Starting from rest, it takes two revolutions for the disk to reach full speed. Assuming that the angular acceleration of the disk is constant, what is its angular acceleration while it is speeding up
State the following forms of electromagnetic radiation in increasing order of wavelength.Radiowaves, gamma rays, x-rays, infrared radiation, visible light​
A 0.26-kg stone is held 1.2 m above the top edge of a water well and then dropped into it. The well has a depth of 4.5 m. (a) Relative to the configuration with the stone at the top edge of the well, what is the gravitational potential energy of the stone−Earth system before the stone is released?

The Lamborghini Huracan has an initial acceleration of 0.80g. Its mass, with a driver, is 1510 kg. If an 80 kg passenger rode along, what would the car's acceleration be?​

Answers

Final answer:

The problem discusses the change in acceleration when a passenger is added to a car. It requires understanding of Newton's second law of motion, force equals mass times acceleration, and then recalculating the acceleration with the passenger added to the total mass.

Explanation:

This problem pertains to Newton's second law of motion, stating that the force applied on an object equals its mass times its acceleration (F = ma). Given that the initial acceleration of the Lamborghini Huracan with a driver is 0.80g or 0.80*9.80 m/s², we can calculate the force applied by the car. By multiplying the car's mass (1510 kg) with its acceleration, we will find the force.

Οnce we have the force, we can calculate the new acceleration if the 80 kg passenger rode along. Given that the force is constant, we determine the car's new acceleration by dividing this force with the new total mass (car mass + passenger's mass). So the question ultimately requires an application of the concepts of force, mass, and acceleration.

Learn more about Newton's second law and acceleration here:

brainly.com/question/31152946

#SPJ1

Final answer:

The new acceleration of the Lamborghini Huracan with an added passenger can be calculated by finding the initial force using the car's mass and acceleration, and then using this force with the increased mass (original mass + passenger's mass) to find the new acceleration. The new acceleration will be less than the initial acceleration due to the increased mass.

Explanation:

To determine the new acceleration of the Lamborghini Huracan with an added passenger, we first calculate the initial force acting on the car. This can be done by using Newton's second law which states that Force = mass * acceleration. Initially, the acceleration is 0.80g (where g is acceleration due to gravity = 9.81 m/s²), and the mass is 1510 kg (including the driver). Therefore, the initial force = 1510 kg * 0.8 * 9.81 m/s².

However, when an 80-kg passenger rides along, the total mass becomes 1510 kg + 80 kg = 1590 kg. To find the new acceleration, we keep the force constant (as it is not affected by the introduction of the passenger) and rearrange the formula F = m*a as a = F/m. Use the increased mass to find the new acceleration. Please note that the new acceleration will be less than the initial acceleration due to increased mass.

Learn more about Acceleration Calculation here:

brainly.com/question/14446351

#SPJ2

According to the World Flying Disk Federation, the world distance record for a flying disk throw in the men’s 85-years-and-older category is held by Jack Roddick of Pennsylvania, who on July 13, 2007, at the age of 86, threw a flying disk for a distance of 54.0 m. If the flying disk was thrown horizontally with a speed of 13.0 m/s, how long did the flying disk remain aloft? (Jack Roddick was also a physics teacher! Read more about him at

Answers

Answer:

t = 4.15 seconds

Explanation:

It is given that,

Distance traveled by a flying disk, d = 54 m

The speed at which it was thrown, v = 13 m/s

We need to find the time for which the flying disk remain aloft. Let the distance is d. We know that, speed is equal to the distance covered divided by time. So,

t=(d)/(v)\n\nt=(54\ m)/(13\ m/s)\n\nt=4.15\ s

Hence, for 4.15 seconds the flying disk remain aloft.

The electric field just above the surface of the charged drum of a photocopying machine has a magnitude E of 2.5 × 105 N/C. What is the surface charge density on the drum, assuming that the drum is a conductor?

Answers

Answer:

Charge_(density)=2.2125*10^(-6)C/m^(2)

Explanation:

Given data

Electric Field E=2.5×10⁵ N/C

To find

Charge Density

Solution

From definition of charge density we know that:

Charge Density=Electric field×Permttivity

Where Permttivity ∈₀=8.85×10⁻¹²C²/N.m²

Charge_(density)=(2.5*10^(5)N/C)*(8.85*10^(-12)C^(2)/N.m^(2))\n Charge_(density)=2.2125*10^(-6)C/m^(2)

A boy throws a 15 kg ball at 4.7 m/s to a 65 kg girl who is stationary and standing on a skateboard. After catching the ball, the girl is travelling at: a) 0.88 m/s b) 0 m/s c) 1.1 m/s d) 3.2 m/s

Answers

Answer:

a)v_(f)=0.88m/s

Explanation:

To solve this problem we use the Momentum's conservation Law, before and after the girl catch the ball:

\n p_(1)=p_(2)\nm_(ball)*v_(o.ball)+m_(girl)*v_(o.girl) = m_(ball)*v_(f.ball) + m_(girl)*v_(f.girl)        (1)

At the beginning the girl is  stationary:

v_(o.girl)=0m/s       (2)

If the girl catch the ball, both have the same speed:

v_(f.girl)=v_(f.ball)=v_(f)       (3)

We replace (2) and (3) in (1):

m_(ball)*v_(o.ball) = (m_(ball)+m_(girl))*v_(f) \n

We can now solve the equation for v_{f}:

v_(f)=(m_(ball)*v_(o.ball))/((m_(ball)+m_(girl)))=(15*4.7)/(15+65)=0.88m/s

An advantage of J.J. Thomson's Plum Pudding Model was that it _____. A. was a much less expensive way to study atoms
B. simplified the calculations necessary to describe an atom
C. clearly explained where electrons were located in an atom
D. is much less expensive to bake a plum pudding than to look at an atom

Answers

the answer is d i think


Answer: plz mark brainliest

the answer is C

Explanation:

bc he used the plums or whatever's inside of the pudding to identify were electrons could be located and since it was a well known deserte many people where able to understand his analogy

How can scientific method solve real world problems examples

Answers

The scientific method is nothing more than a process for discovering answers. While the name refers to “science,” this method of problem solving can be used for any type of problem