Answer:
The answers indicate that wavelength is inversely proportional to the energy of light (photon)
Explanation:
Energy of photon E = hc/λ
where;
h is Planck's constant = 6.626 X 10⁻³⁴js
c is the speed of light (photon) = 3 X 10⁸ m/s
λ is the wavelength of the photon
⇒For ultraviolet ray, with wavelength λ = 1 x 10⁻⁸ m
E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (1 x 10⁻⁸)
E = 19.878 10⁻¹⁸ J
⇒For Visible light, with wavelength λ = 5 x 10⁻⁷ m
E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (5 x 10⁻⁷)
E = 3.9756 X 10⁻¹⁹ J
⇒For Infrared, with wavelength λ = 1 x 10⁴ m
E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (1 x 10⁴)
E = 19.878 X 10⁻³⁰ J
From the result above, ultraviolet ray has the shortest wavelength, but it has the highest energy among other lights.
Also infrared has the highest wavelength but the least energy among other lights.
Hence, wavelength is inversely proportional to the energy of light (photon).
Answer:
The value of Keq is 4e-9. See the solution below
Explanation:
We need to balanced rhe equation and use the formula of the Keq
Answer:
To determine the value of Kp for the given equilibrium, we need to use the partial pressures of the gases involved.
In the balanced equation: 2 HI (g) ⇌ H₂ (g) + I₂ (g), the stoichiometric coefficients are 2, 1, and 1 respectively.
At equilibrium, the expression for Kp is given by:
Kp = (P(H₂) * P(I₂)) / (P(HI)²)
Using the provided partial pressures:
P(HI) = 1.9 atm
P(H₂) = 7.9 atm
P(I₂) = 2.3 atm
Substituting these values into the expression for Kp:
Kp = (7.9 * 2.3) / (1.9²)
Kp ≈ 19.5 / 3.61
Calculating the result:
Kp ≈ 5.4
Therefore, the value of Kp for the given equilibrium is approximately 5.4.
MARK AS BRAINLIEST!!!
Answer:
The three isomers having the molecular formula are drawn in the figure below.
Explanation:
True
False
Answer:
6.82 kg
Explanation:
Given that the amount of water is 15L and we know that the density of water is ≈ 1kg/L. The mass of water is given by mass = volume x density, i.e,
mass = 15 x 1 = 15 kg. Also the specific heat capacity of water is 4.186 KJ/kg.
The sublimation enthalpy of dry ice is 571 KJ/kg.
Now, the amount of heat lost by water is entirely used up for the sublimation (conversion from soild to gas) of dry ice. And the heat (Q) lost by water is given as : Q = mCΔT, where m is the mass of water, C the specific heat capacity of water and ΔT the change in temperature.
Here, Q = 15 x 4.186 x (90 - 28) = 3892.98 KJ.
This amount of heat is taken up by the dry ice for its sublimation. Also the energy taken by dry ice (Q') for its sublimation is given by: Q' = m'L', where m' is the mass of dry ice, L' is the latent heat of sublimation (i.e, the amount of heat required per kg of a substance to sublime) of dry ice amd L' = 571 KJ/kg.
Now, Q' =m'L' = heat lost by water = 3892.98KJ.
And, m'L' = m' x 571 KJ/kg = 3892.98 KJ. (Dividing with 571)
Therefore, m' = 6.82 kg.
B. a change in
c. not related to
D. only an increase in
Answer:
option B is correct
Explanation:
impulse is a change in momentum