Answer:
Efficiency e = W/Qh
Explanation:
As written above efficiency of a system is calculated as the output per unit input. For heat Engine, Efficiency is calculated by dividing the Work done by Engine by Heat absorbed from hot reservoir.
In theoretical terms The maximum efficiency of a heat engine (which no engine ever attains) is equal to the temperature difference between the hot and cold ends divided by the temperature at the hot end, each expressed in absolute temperature (Kelvin).
But in practical calculations, it is calculated as e = W/Qh , and we define the thermal efficiency, of any heat engine as the ratio of the work it does, W, to the heat input at the high temperature, Qh.
Answer:
Explanation:
There is a convex lens M N is placed. An object AB is placed at a distance more than two focal lengths of the lens.
A ray of light is starting from point A and parallel to the principal axis, then after refraction it goes from the focus.
Another ray which goes through the optical centre of the lens becomes undeviated after refraction.
The two refracted rays meet at the point A', So A'B is the image of AB.
The nature of image is real, inverted and diminished.
Answer:
a)
492 kJ
b)
Consistent
Explanation:
Q = Heat stored by woman from food = 600 k J
η = Efficiency of woman = 18% = 0.18
Q' = heat transferred to the environment
heat transferred to the environment is given as
Q' = (1 - η) Q
Inserting the values
Q' = (1 - 0.18) (600)
Q' = 492 kJ
b)
Yes the amount of heat transfer is consistent. The process of sweating produces the heat and keeps the body warm
A woman climbing the Washington Monument metabolizes food energy with 18% efficiency, meaning 82% of the energy is lost as heat. When we calculate this value, we find that 492 kJ of energy is released as heat, which is consistent with the fact that people quickly warm up when exercising.
The woman climbing the Washington Monument metabolizes 6.00×10² kJ of food energy with an efficiency of 18%. This implies that only 18% of the energy consumed is used for performing work, while the remaining (82%) is lost as heat to the environment.
To calculate the energy lost as heat:
The released heat of 492 kJ is consistent with the fact that a person quickly warms up when exercising, because a significant portion of the body's metabolic energy is lost as heat due to inefficiencies in converting energy from food into work.
#SPJ3
The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric.
Answer:
U_eq = 1.99 * 10^(-10) J
Explanation:
Given:
Plate Area = 10 cm^2
d = 0.01 m
k_dielectric = 3
k_air = 1
V = 15 V
e_o = 8.85 * 10 ^-12 C^2 / N .m
Equations used:
U = 0.5 C*V^2 .... Eq 1
C = e_o * k*A /d .... Eq 2
U_i = 0.5 e_o * k_i*A_i*V^2 /d ... Eq 3
For plate to be half filled by di-electric and half filled by air A_1 = A_2 = 0.5 A:
U_electric = 0.5 e_o * k_1*A*V^2 /2*d
U_air = 0.5 e_o * k_2*A*V^2 /2*d
The total Energy is:
U_eq = U_electric + U_air
U_eq = 0.5 e_o * k_1*A*V^2 /2*d + 0.5 e_o * k_2*A*V^2 /2*d
U_eq = (k_1 + k_2) * e_o * A*V^2 / 4*d
Plug the given values:
U_eq = (3 + 1) * (8.82 * 10^ -12 )* (0.001)*15^2 / 4*0.01
U_eq = 1.99 * 10^(-10) J
Answer:
v = 4.1 m / s
Explanation:
Velocity is defined by the relation
v =
we perform the derivative
v = 4.1 m / s
Another way to find this magnitude is to see that the velocity on the slope of a graph of h vs t
v =
Δx = v Δdt + x₀
h= 4.1 t + 5.5
v = 4.1 m / s
x₀ = 5.5 m
The Speed of a Particle is 4.1 meters per second.
The position of a particle can be represented by a linear equation of the form h(t) = (at + b) where a and b are constants.
In this case, the equation is h(t) = (4.1t + 5.5).
To find the speed of the particle, we can take the derivative of the position equation with respect to time.
The derivative of h(t) is the rate of change of position with respect to time, which represents the velocity of the particle.
In this case, the derivative is 4.1 meters per second.
Therefore, the speed of the particle is 4.1 meters per second.
Learn more about Speed of a Particle here:
#SPJ3
Answer:
d = 2*0.87 = 1.75 cm
Explanation:
by using flow rate equation to determine the speed in larger pipe
= 591.10 cm/s
= 5.91 m/s
by Bernoulli's EQUATION
solving for v2
v2 = 10.53 m/s
diameter can be determine by using flow rate equation
r = 0.87 cm
d = 2*0.87 = 1.75 cm
Answer:
Explanation:
We have given the radius of first sphere is 10 cm and radius of second sphere is 20 cm
So the potential of first sphere will be greater than the potential of the second sphere, so charge will flow from first sphere to second sphere
Let q charge is flow from first sphere to second sphere and then potential become same
So
200-100=2q+q
So
We know that potential energy U=qV
Answer:
The electric potential energy between the two charged spheres is
Explanation:
Given that,
Radius of first sphere
Radius of second sphere
Charge Q= 100 nC
We know charge flows through higher potential to lower potential.
Using formula of potential
...(I)
...(II)
From equation (I) and (II)
Put the value into the formula
So, the potential at R₁ and R₂
Using formula of potential
Put the value into the formula
We need to calculate the electric potential energy between the two charged spheres
Using formula of the electric potential energy
Hence, The electric potential energy between the two charged spheres is