Answer: the gas is lighter than CO2 and it is hydrogen
Explanation:Please see attachment for explanation
Answer: C2H4S5
Explanation:
Since the total mass is 5.000g
Mass of sulphur = 5.000-(0.6357+0.1070)
Mass of sulphur = 4.2573g
Using Empirical relation
C= 0.6357 H= 0.1070 S= 4.2573
Divide through by their molar mass to obtain the smallest ratio
C= 0.6357/12 H=0.1070/1 S=4.2573/32
C= 0.053 H= 0.1070 S= 0.133
Divide through by the smallest ratio (0.053)
C=0.053/0.053 H=0.1070/0.053 S=0.133/0.053
C=1 H=2 S=2.5
1:2:2.5 ,multiply through by 2 ,to obtain whole numbera
2:4:5
Therefore the empirical formula is C2H4S5. Thus only gives the ratio
Molecular formula is the chemical formula .
(Empirical formula) n = molecular formula
(C2H4S5)n = molar mass
[(12×2) + ( 1×4) +(32×5)]n = 188.4
188n=188.4
n= 1
Molecular formula = (C2H4S5)×1
Therefore the chemical formula of
lenthionine is C2H4S5
Explanation:
..(1)
Manganese (II) carbonate and oxygen reacts to give manganses (III) oxide with carbon-dioxide gas.
..(2)
Manganese (III) oxide reacts with aluminum metal to give aluminum oxide and manganese metal
On adding (1) and 2(2) we will get the net net chemical equation for the production of manganese. So,
The net balanced equation we got:
The production of manganese from manganese (II) carbonate, oxygen, and aluminum involves two chemical reactions. Heating manganese (II) carbonate with oxygen yields manganese(III) oxide and carbon dioxide. This manganese (III) oxide then reacts with aluminum to produce manganese and aluminum oxide.
The chemical reaction can be described in terms of a net chemical equation after properly balancing the chemicals involved on both sides of the equation. The first step is to understand and correctly write down the formula of reactants and products for the reaction. Here: Manganese (II) Carbonate (MnCO3), Oxygen (O2), and Aluminum (Al).
In the process of manganese production, Manganese (II) Carbonate is first heated in the presence of oxygen to yield Manganese (III) Oxide (Mn2O3) and Carbon Dioxide (CO2):
MnCO3 + 1/2 O2 -> Mn2O3 + CO2.
The resulting Manganese (III) Oxide reacts with Aluminum (which acts as a reducing agent in this case) to generate Manganese and Aluminum Oxide:
3 Mn2O3 + 4 Al -> 6 Mn + 2 Al2O3.
These two equations combined represent the net chemical equation for the production of manganese from manganese (ii) carbonate, oxygen, and aluminum.
#SPJ12
B. ribose sugar, cytosine, guanine, adenine, uracil, and phosphate group
C. deoxyribose sugar, cytosine, guanine, adenine, thymine, and phosphate group
D. deoxyribose sugar, cytosine, guanine, adenine, uracil, and phosphate group
Answer:
C
Explanation:
A-T G-C
Answer:5
Explanation:
Answer:
The freezing point of a solution is lowered compared to the freezing point of the pure solvent. The amount of depression of the freezing point is proportional to the molality of the solute. The greater the molality of a solution, the lower its freezing point. To compare the freezing points of these solutions, we need to determine which one has the highest molality.
First, we need to determine the number of particles that each solute will produce in solution, as this affects the amount of depression of the freezing point.
KNO3 dissociates into two ions: K+ and NO3-, so it will produce two particles per formula unit.
BaCl2 dissociates into three ions: Ba2+ and two Cl-, so it will produce three particles per formula unit.
Ethylene glycol does not dissociate in solution, so it will produce one particle per molecule.
Na3PO4 dissociates into four ions: three Na+ and one PO43-, so it will produce four particles per formula unit.
Now, we can calculate the molality (moles of solute per kilogram of solvent) for each solution:
For 0.10 m KNO3: molality = 0.10 mol / 1 kg = 0.10 m
For 0.10 m BaCl2: molality = 0.10 mol x 3 particles / 1 kg = 0.30 m
For 0.10 m ethylene glycol: molality = 0.10 mol / 1 kg = 0.10 m
For 0.10 m Na3PO4: molality = 0.10 mol x 4 particles / 1 kg = 0.40 m
So, the solutions in order of decreasing freezing points are:
0.10 m Na3PO4 (highest molality)
0.10 m BaCl2
0.10 m KNO3 and 0.10 m ethylene glycol (same molality, but KNO3 has a smaller van't Hoff factor than ethylene glycol, so it will have a slightly higher freezing point)
Explanation:
Be mindful of your spelling.
Scientific method involves the systematic step by step method of answering a question. The six major steps involved in a scientific method are purpose, research, hypothesis, experiment, analysis, and conclusion.
Purpose of a scientific method is the question being asked or the problem to be solved.
Research is the collection of background information relevant to the purpose of the experiment.
Hypothesis is the answer predicted to the question under study, as per the background research.
Experiment is the testing of the hypothesis. Experiment has independent and dependent variables, independent variable is changed by the experimenter and its effect is studied on the dependent variable.
Analysis involves the data interpretation in order to prove the hypothesis.
Conclusion is the review of data set to prove the hypothesis to be correct or incorrect.
Answer: -
1. Observation
Any incident that makes the scientific mind curious is an observation for the scientific mind.
2. Question
The scientific mind then refines the general observation into a proper line of curiosity to ponder the reason behind it.
3. Hypothesis
A hypothesis is an informed guess as to the possible answer of the question developed by the scientific mind. Hypothesis may not be correct but should provide a direction for further investigation.
4. Experiment
To test the hypothesis, the scientific mind designs an experiment. The experiment must be controlled and reproducible.
5. Analysis
Using several trials of the experiment, the results are noted down. The data is then correlated with the hypothesis.
6. Conclusion
After analysis of the data, a conclusion is drawn on whether the hypothesis is correct or incorrect. If the hypothesis is incorrect, then a new hypothesis must be made.
If it is correct, then our original question is answered.