Hess's law is used to measure the enthalpy of a desired chemical reaction because: D. Intermediate equations with known enthalpies are added together.
Hess's Law is also known as Hess's law of constant heat summation (enthalpy) and it was named after a Swiss-born Russian chemist called Germain Hess.
Hess's Law states that the energy change (enthalpy) experienced in a desired chemical reaction is equal to the sum of the energy changes (enthalpies) in each chemical reactions that it is made up of or contains.
Read more on Hess's Law here: brainly.com/question/9328637
Answer:
Individual mole fractions of all the species of the all reaction is as follows.
(a)
(b)
(c)
Explanation:
(a)
Initial number of moles of and are 2 mol and 5 mol respectively.
The given chemical reaction is as follows.
The stoichiometric numbers are as follows.
The total number of moles initially present -7
The expression for the mole fraction of species"i" is as follows.
The individual mole fractions of all the species are as follows.
(b)
Initial number of moles of and are 3 mol and 5 mol respectively.
The given chemical reaction is as follows.
The stoichiometric numbers are as follows.
The total number of moles initially present -8
The expression for the mole fraction of species"i" is as follows.
The individual mole fractions of all the species are as follows.
(c)
Initial number of moles of , and are 3 mol,4 mol and 1 mol respectively.
The given chemical reaction is as follows.
The stoichiometric numbers are as follows.
The total number of moles initially present -8
The expression for the mole fraction of species"i" is as follows.
The individual mole fractions of all the species are as follows.
Expressions for the mole fractions of reacting species are determined using stoichiometry and the initial molar amounts, taking into account the stoichiometric coefficients of the chemical reactions.
To develop expressions for the mole fraction of reacting species as functions of the reaction coordinate for the given systems, we will examine each reaction individually. For the reaction 4NH3 (g) + 5O2 (g) ® 4NO (g) + 6 H2O (g), we can use stoichiometry to correlate the molar amounts of each species with reaction progress. Given the initial amounts, we will track how the molar amount changes for each mole of NH3 reacted.
Starting with 2 mol NH3 and 5 mol O2, the mole ratio from NH3 to NO and H2O is 1:1 and 1:1.5, respectively. The mole ratio from NH3 to O2 is 4:5. If x moles of NH3 react, the mole fractions for each species at any point in the reaction can be expressed as follows:
Note that 'Total moles' is the sum of the ongoing moles of all species. The mole fractions must always add up to 1 at any point during the reaction.
For the second reaction 6NO2 (g) + 8NH3 (g) ® 7N2 (g) +12H2O (g), with initial amounts of 3 mol NO2, 4 mol NH3, and 1 mol N2, similar steps are taken. For every mole of NH3 reacted, the corresponding changes in molar amounts can be calculated from the stoichiometry of the balanced equation.
#SPJ3
Answer:
0.2 moles of CO₂ are produced
Explanation:
Given data:
Moles of CO₂ produced = ?
Moles of Na₂CO₃ react = 0.2 mol
Solution:
Chemical equation:
Na₂CO₃ + 2HCl → 2NaCl + CO₂ + H₂O
Now we will compare the moles of CO₂ with Na₂CO₃ .
Na₂CO₃ : CO₂
1 : 1
0.2 : 0.2
Thus, 0.2 moles of CO₂ are produced.
distance between the objects
acceleration of the objects
masses of the objects
Increasing distance between the objects factor will cause the gravitational force between two objects to decrease. Therefore, option B is correct.
The gravitational force grows in proportion to the size of the masses . The gravitational force weakens rapidly as the distance between masses grows. Unless at least one of the objects has a lot of mass, detecting gravitational force is extremely difficult.
Gravity is affected by object size and distance between objects. Mass is a unit of measurement for the amount of matter in an object.
The force of gravity is proportional to the masses of the two objects and inversely proportional to the square of the distance between them. This means that the force of gravity increases with mass but decreases as the distance between objects increases.
Thus, option B is correct.
To learn more about the gravitational force, follow the link;
#SPJ6
Answer:
B
Explanation:
b. 26.0 g H2SO4 in 200.0 mL solution
c. 15.0 g NaCl dissolved to make 420.0 mL solution
Answer:
a) NaHCO3 = 0.504 M
b) H2SO4 = 1.325 M
c) NaCl = 0.610 M
Explanation:
Step 1: Data given
Moles = mass / molar mass
Molarity = moles / volume
a. 19.5 g NaHCO3 in 460.0 ml solution
Step 1: Data given
Mass NaHCO3 = 19.5 grams
Volume = 460.0 mL = 0.460 L
Molar mass NaHCO3 = 84.0 g/mol
Step 2: Calculate moles NaHCO3
Moles NaHCO3 = 19.5 grams / 84.0 g/mol
Moles NaHCO3 = 0.232 moles
Step 3: Calculate molarity
Molarity = 0.232 moles / 0.460 L
Molarity = 0.504 M
b. 26.0 g H2SO4 in 200.0 mL solution
Step 1: Data given
Mass H2SO4 = 26.0 grams
Volume = 200.0 mL = 0.200 L
Molar mass H2SO4 = 98.08 g/mol
Step 2: Calculate moles H2SO4
Moles H2SO4 = 26.0 grams / 98.08 g/mol
Moles H2SO4 = 0.265 moles
Step 3: Calculate molarity
Molarity = 0.265 moles / 0.200 L
Molarity =1.325 M
c. 15.0 g NaCl dissolved to make 420.0 mL solution
Step 1: Data given
Mass NaCl = 15.0 grams
Volume = 420.0 mL = 0.420 L
Molar mass NaCl = 58.44 g/mol
Step 2: Calculate moles NaCl
Moles NaCl = 15.0 grams / 58.44 g/mol
Moles NaCl = 0.256 moles
Step 3: Calculate molarity
Molarity = 0.256 moles / 0.420 L
Molarity =0.610 M
b) The final rms molecular speed will be the same for both gases.
c) The final average kinetic energy of a molecule will be the same for both gases.
Answer:
a,c are correct
Explanation:
a) On mixing two gases the final temperature of both the gases becomes the same. The heat will flow from high temp. gas to lower temp gas till the temp of both gases become equal (Thermal equilibrium). This is correct.
b) The rms speed of the molecule is inversely proportional to its molar mass so the final rsm will not be the same. This is incorrect.
c) The average kinetic energy of the system will remain the same. Hence this is also correct.
b. An endothermic reaction that only proceeds when coupled to an exothermic reaction
c. An endothermic reaction that only proceeds when a catalytst is present
d. An endothermic reaction which is not spontaneous
e. All of the above
Answer: Option (c) is the correct answer.
Explanation:
It is given that the scientist is claiming that all the spontaneous reactions are exothermic in nature.
And, it is known that when a reaction is spontaneous in nature then is negative.
Now, the relation between Gibb's free energy, enthalpy and entropy is as follows.
=
So, when a catalyst is present in a chemical reaction then we do not need to give large amount of heat from outside. And, because of this the enthalpy of reaction will not be highly positive.
Hence, the value of will result in a negative value which means the reaction is spontaneous.
Thus, we can conclude that an endothermic reaction that only proceeds when a catalytst is present, would provide the strongest challenge to their claim.