The oxygen atom is smaller than the sulfur atom because _____(1) the outer electrons of oxygen are more effectively screened from the nuclear charge than are sulfur’s outer electrons. (2) the outer orbitals of oxygen are located closer to the nucleus than those of sulfur. (3) the oxygen atom is larger than the sulfur atom. (4) the outer electrons of oxygen are less effectively screened from the nuclear charge than are sulfur’s outer electrons. (5) the outer orbitals of oxygen are located farther away from the nucleus than those of sulfur.

Answers

Answer 1
Answer:

Answer: Option (2) is the correct answer.

Explanation:

Atomic number of oxygen atom is 8 and its electronic distribution is 2, 6. So, it contains only 2 orbitals which are closer to the nucleus of the atom.

As a result, the valence electrons are pulled closer by the nucleus of oxygen atom due to which there occurs a decrease in atomic size of the atom.

Whereas atomic number of sulfur is 16 and its electronic distribution is 2, 8, 6. As there are more number of orbitals present in a sulfur atom so, the valence electrons are away from the nucleus of the atom.

Hence, there is less force of attraction between nucleus of sulfur atom and its valence electrons due to which size of sulfur atom is larger than the size of oxygen atom.

Thus, we can conclude that the oxygen atom is smaller than the sulfur atom because the outer orbitals of oxygen are located closer to the nucleus than those of sulfur.

Answer 2
Answer:

Final answer:

The oxygen atom is smaller than the sulfur atom because the outer orbitals of oxygen are located closer to the nucleus than those of sulfur.

Explanation:

The correct option is (2) the outer orbitals of oxygen are located closer to the nucleus than those of sulfur.



To understand why the oxygen atom is smaller than the sulfur atom, we need to consider their electron configurations. Oxygen has 8 electrons and sulfur has 16 electrons. Oxygen's electron configuration is 1s²2s²2p⁴, while sulfur's electron configuration is 1s²2s²2p⁶3s²3p⁴.



The outer orbitals of an atom, which are the valence orbitals, are the ones involved in bonding. The electrons in these orbitals determine the size of the atom. In the case of oxygen and sulfur, the outer orbitals of oxygen (2p orbitals) are closer to the nucleus compared to sulfur's outer orbitals (3p orbitals). As a result, the oxygen atom is smaller than the sulfur atom.

Learn more about Atomic structure here:

brainly.com/question/7328982

#SPJ3


Related Questions

Hydrazine, N2H4, is a weak base and is used as fuel in the space shuttle.N2H4(aq)+H2O(l)âN2H5+(aq)+OHâ(aq)Part AIf the pH of a 0.133 M solution is 10.66, what is the ionization constant of the base?Express your answer using two significant figures.
Help me as soon as possible I’m gonna dieeee
All voltmeters have two probes attached to make a measurement explain why you cannot make a voltmeter with a single probe to measure the voltage of a wire
The gas-phase reaction follows an elementary rate law and is to be carried out first in a PFR and then in a separate experiment in a CSTR. When pure A is fed to a 10 dm 3 PFR at 300 K and a volumetric flow rate of 5 dm 3 /s, the conversion is 80%. When a mixture of 50% A and 50% inert (I) is fed to a 10 dm 3 CSTR at 320 K and a volumetric flow rate of 5 dm 3 /s, the conversion is also 80%. What is the activation energy in cal/mol
The enthalpy of vaporization (ΔH°vap) of benzene is 30.7 kJ/mol at its normal boiling point of 353.3 K. What is ΔS°vap at this temperature? a. 383 J/(mol·K) b. 0.0115 J/(mol·K) c. 86.9 J/(mol·K) d. 0.087 J/(mol·K) e. 11.5 J/(mol·K)

Problem Page What kind of intermolecular forces act between a hydrogen peroxide molecule and an iron(III) cation? Note: If there is more than one type of intermolecular force that acts, be sure to list them all, with a comma between the name of each force.

Answers

Answer:

H20

Explanation:

peroxide would also eat bacteria along with the water

Final answer:

The primary intermolecular forces which act between a molecule of hydrogen peroxide (H2O2) and an iron(III) cation (Fe3+) are ion-dipole attractions. These arise due to the polar nature of the H2O2 molecule and the charged state of the Fe3+ ion.

Explanation:

The kind of intermolecular forces that act between a hydrogen peroxide molecule and an iron(III) cation chiefly involve ion-dipole attractions, which are a type of intermolecular force. This occurs due to the polar nature of the hydrogen peroxide molecule (H2O2) and the charged iron(III) ion (Fe3+).

The O-H bonds in the hydrogen peroxide molecule are polar as oxygen exhibits a higher electronegativity than hydrogen, meaning that it has a tendency to draw electrons closer to itself. This results in a dipole with partial negative charge residing at the oxygen end of the molecule, and a partial positive charge at the hydrogen end. Meanwhile, the iron(III) ion has a positive charge. This makes for a strong ion-dipole interaction between the two.

It's important to remember that intermolecular forces are the attractions between molecules which are crucial to their physical properties, while intramolecular forces are those that keep a single molecule intact. Further, although the term 'hydrogen bond' may suggest a bond between hydrogen and other atoms, it is, in fact, an intermolecular attraction force which is stronger than others like dipole-dipole attractions and dispersion forces.

Learn more about Intermolecular Forces here:

brainly.com/question/34620632

#SPJ2

How many iron atoms are in 0.32 mol of Fe2031? 3.9x 1023 jron atoms O 3.9 iron atoms O 6.02 x 1023 iron atoms 1.9 x 1023 iron atoms O 11x 10-24 iron atoms

Answers

Answer: 3.9* 10^(23) iron atoms

Explanation:

According to avogadro's law, 1 mole of every substance weighs equal to the molecular mass and contains avogadro's number 6.023* 10^(23) of particles.

1 molecule of [tex]Fe_2O_3 contains= 2 atoms of iron

1 mole of [tex]Fe_2O_3 contains=2* 6.023* 10^(23)=12.05* 10^(23)  atoms of iron

thus 0.32 moles of Fe_2O_3 contains=(12.05* 10^(23))/(1)* 0.32=3.9* 10^(23)  atoms  of iron

Thus the sample would have 3.9* 10^(23) iron atoms.

What is the molarity of the following solutions?a. 19.5 g NaHCO3 in 460.0 ml solution
b. 26.0 g H2SO4 in 200.0 mL solution
c. 15.0 g NaCl dissolved to make 420.0 mL solution

Answers

Answer:

a) NaHCO3 = 0.504 M

b) H2SO4 = 1.325 M

c) NaCl = 0.610 M

Explanation:

Step 1: Data given

Moles = mass / molar mass

Molarity = moles / volume

a. 19.5 g NaHCO3 in 460.0 ml solution

Step 1: Data given

Mass NaHCO3 = 19.5 grams

Volume = 460.0 mL = 0.460 L

Molar mass NaHCO3 = 84.0 g/mol

Step 2: Calculate moles NaHCO3

Moles NaHCO3 = 19.5 grams / 84.0 g/mol

Moles NaHCO3 = 0.232 moles

Step 3: Calculate molarity

Molarity = 0.232 moles / 0.460 L

Molarity = 0.504 M

b. 26.0 g H2SO4 in 200.0 mL solution

Step 1: Data given

Mass H2SO4 = 26.0 grams

Volume = 200.0 mL = 0.200 L

Molar mass H2SO4 = 98.08 g/mol

Step 2: Calculate moles H2SO4

Moles H2SO4 = 26.0 grams / 98.08 g/mol

Moles H2SO4 = 0.265 moles

Step 3: Calculate molarity

Molarity = 0.265 moles / 0.200 L

Molarity =1.325 M

c. 15.0 g NaCl dissolved to make 420.0 mL solution

Step 1: Data given

Mass NaCl = 15.0 grams

Volume = 420.0 mL = 0.420 L

Molar mass NaCl = 58.44 g/mol

Step 2: Calculate moles NaCl

Moles NaCl = 15.0 grams / 58.44 g/mol

Moles NaCl = 0.256 moles

Step 3: Calculate molarity

Molarity = 0.256 moles / 0.420 L

Molarity =0.610 M

What is the molarity if 24 moles of solute are dissolved into 6 L of solution?

Answers

Answer:

Molarity= 4M

Explanation:

n= CV

24= C×6,

C= 24/6 = 4M

Answer:4M

Explanation:

Number of moles=24

Volume=6L

Molarity=number of moles ➗ volume

Molarity=24 ➗ 6

Molarity=4M

3. Theoretically how many grams of magnesium is required to produce to 5.0 g ofMagnesium oxide?

Answers

Answer:

3grams

Explanation:

The reaction for the production of Magnesium dioxide will be

Mg + O2  → MgO

we have 5g of MgO (molar mass 40g)

no of moles of MgO = 5/40 = 0.125

Using unitary method we have

1 mole of Mg require 1 mole of MgO

0.125 Mole of MgO = 0.125mole of Mg

n = given mass /molar mass

0.125 = mass / molar mass

mass = 0.125* 24 = 3grams

Final answer:

To produce 5 grams of magnesium oxide, you would theoretically need approximately 3.013 grams of magnesium, based on the mole ratio and molecular weights of magnesium and magnesium oxide.

Explanation:

To calculate the amount of magnesium needed to produce magnesium oxide, we first need to understand the balanced chemical equation for the reaction: Mg + 1/2O2 → MgO. This equation shows that a mole of magnesium (24.31 g) reacts with half a mole of oxygen (8 g) to produce a mole of magnesium oxide (40.31 g). Therefore, if we want to produce 5g of magnesium oxide, we'll need: (5 g MgO * 24.31 g Mg) / 40.31 g MgO = 3.013 g Mg, approximately which is the theoretical amount of magnesium needed.

Learn more about Theoretical Amount of Magnesium here:

brainly.com/question/33778749

#SPJ11

Which of the following is an example of physical change?

Answers

Answer:

The glass cup falling from the counter

Explanation:

the glass isn't changing in any chemical way. it's still made of the same material, just broken apart.

Final answer:

Physical changes involve the alteration of the state or appearance of matter, without changing the composition. An example is solid wax turning into liquid wax when heated, or steam condensing inside a cooking pot.

Explanation:

The question asks for an example of a physical change. Physical changes involve alterations in the state or appearance of matter, without changing its composition. For example, solid wax turning into liquid wax when heated is a physical change. The wax is still the same substance, it's just in a different state. Similarly, steam condensing inside a cooking pot is also a physical change. The water vapor turns back into liquid water, but it's still water. These are distinguished from chemical changes, which transform one substance into a different substance.

Learn more about Physical Change here:

brainly.com/question/17931044

#SPJ2