Answer:
Answer:
A chemical reaction is the process in which atoms present in the starting substances rearrange to give new chemical combinations present in the substances formed by the reaction. These starting substances of a chemical reaction are called the reactants, and the new substances that result are called the products.
The quantity of acetic acid that is needed to prepare the 500 mL buffer is 9.0075 grams.
Given the following data:
First of all, we would write the equilibrium chemical reaction for acetate-acetic acid as follows:
Next, we would calculate HA by applying Henderson-Hasselbalch equation:
Where:
Substituting the given parameters into the formula, we have;
For the concentration of both acids, we have:
For acetate ion:
At a volume of 0.5 liters, we have:
By stoichiometry:
Total moles = = 0.15 moles.
Mass = 9.0075 grams.
Read more on moles here: brainly.com/question/3173452
Answer:
You will need 9,0 g of acetic acid
Explanation:
The equilibrium acetate-acetic acid is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ pka = 4,76
Using Henderson-Hasselbalch you will obtain:
pH = pka + log₁₀
Where HA is acetic acid and A⁻ is acetate ion
4,90 = 4,76 + log₁₀
1,38 = (1)
As acetate concentration is 0,300M:
0,300M = [HA] + [A⁻] (2)
Replacing (2) in (1):
[HA] = 0,126 M
And:
[A⁻] = 0,174 M
As you need to produce 500 mL:
0,5 L × 0,126 M = 0,063 moles of acetic acid
0,5 L × 0,174 M = 0,087 moles of acetate
To produce moles of acetate from acetic acid:
CH₃COOH + NaOH → CH₃COO⁻ + Na⁺ + H₂O
Thus, moles of acetate are equivalents to moles of NaOH and all acetates comes from acetic acid, thus:
0,087 moles of acetate + 0,063 moles of acetic acid ≡ 0,15 moles of acetic acid × = 9,0 g of acetic acid
I hope it helps!
Answer: 1.63 moles
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number of particles.
To calculate the moles, we use the equation:
Given mass = 223 g
Molar mass = 136.4
Thus there are 1.63 moles in 223 g of the compound.
Answer:
Go ahead and plug in the percentages and time to find the answer.
Explanation:
The amount of a substance with half-life h, that remains after time t is 0.5t/h
Since 26% has decomposed, 74% remains.
So .74 = 0.580/h
ln .74 = (80/h) ln 0.5
h/80 = ln 0.5 / ln .74
h = 80 ln 0.5 / ln .74
h = 184.16 minutes
Combined gas law,
So, the gas will occupy 22.4 L at STP
C(s)+O2(g)→CO2(g)
2MnO−4(aq)+5SO2(g)+2H2O(l)→2Mn2+(aq)+5SO2−4(aq)+4H+(aq)