Answer:
0.97566 m/s
Explanation:
= Mass of cannon = 2260 kg
= Velocity of cannon
= Mass of ball = 21 kg
= Velocity of ball = 105 m/s
As the momentum of the system is conserved we have
The velocity of the cannon is 0.97566 m/s
The minimum angle that the ladder make with the floor before it slips is 51.34 Degree.
Given data:
The weight of ladder is, W = 100 N.
The length of ladder is, L = 8.0 m.
The coefficient of static friction between ladder and floor is, .
Apply the Newton' law in vertical direction to obtain the value of Normal Force (P) as,
And force along the horizontal direction is,
Now, taking the torque along the either end of ladder as,
Solving as,
Thus, we can conclude that the minimum angle that the ladder make with the floor before it slips is 51.34 Degree.
Learn more about the frictional force here:
Answer:
The minimum angle is 51.34°
Explanation:
Given that,
Weight of ladder = 100 N
Length = 8.0 m
Coefficient of static friction = 0.40
We need to calculate the normal force
Using Newtons law in vertical direction
We need to calculate the normal force
Using Newtons law in horizontal direction
We need to calculate the minimum angle
Using torque about the point A then
Put the value into the formula
Hence, The minimum angle is 51.34°
Answer:
(a)
(b) Initial velocity of the projectile is 22.54 m/s
(c) Straight line perpendicular to the plane of the car's motion
(d) Parabolic
(e) The initial velocity is 23.04 m/s
Solution:
As per the question:
Velocity of the cart, v = 0.500 m/s
Distance moved by the cart, d = 2.30 m
Now,
(a) The projectile must be fired at an angle of so that it mounts on the top of the cart moving with constant velocity.
(b) Now, for initial velocity, u':
Time of flight is given by;
(1)
where
T = Flight time
D = Distance covered
(b) The component of velocity w.r.t an observer:
Horizontal component,
Vertical component,
Also, the vertical component of velocity at maximum height is zero,
Therefore,
Total flight time, (2)
Now, from eqn (1) and (2):
(c) The shape of the projectile w.r.t an observer will be a straight line perpendicular to the plane of cart's motion.
(d) The shape of the path of the projectile seen by the physics student outside the reference frame of the cart is parabolic
(e) The initial velocity is given by:
u = u' + v = 22.54 + 0.5 = 23.04 m/s
Answer:
Halogen
0.85294
Explanation:
c = Speed of light =
b = Wien's displacement constant =
T = Temperature
From Wien's law we have
Frequency is given by
For Halogen
Frequency is given by
The maximum frequency is produced by Halogen bulbs which is closest to the value of
Ratio
The ratio of Incandescent to halogen peak frequency is 0.85294
Answer:
0.83x10^-9 T
Direction is towards +z axis.
Explanation:
E = cB
E = magnitude of electrical 0.25 Em
c = speed of light in a vacuum 3x10^8 m/s
Therefore,
B = E/c = 0.25 ÷ 3x10^8
B = 0.83x10^-9 T
Magnetic fueld of a EM wave acts perpendicularly to its electric field, therefore it's direction is towards the +Z axis
Answer:
306.8264448 m
47.0016 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Distance traveled by car
Distance traveled by truck
In order to overtake both distances should be equal
The distance the car has to travel is 306.8264448 m
The speed of the car when it overtakes the truck is 47.0016 m/s
b. 30,000 miles
c. 100,000 miles
gravitational force varies based on 1/r^2
when you're double the distance =10,000 to 20,000, the force is 4 times smaller so on and so forth.
As force is proportional to 1 / {distance squared}, the force will be 1 / 2^2 (i.e. 1/4) of the force at the reference distance (i.e. 1/4 * 600 = 150 lb)