Answer:
a) D = 33.44 Lbmol/h
⇒ B = 62.56 Lbmol/h
b) D = 16.848 Kmol/h
⇒ B = 28.152 Kmol/h
Explanation:
global balance:
∴ F = 100 Lbmol/h
balance per component:
A: 0.4*F = 0.9*D + 0.1*B = 0.4*100 = 40 Lbmol/h..............(2)
B: 0.6*F = 0.1*D + 0.9*B = 0.6*100 = 60 Lbmol/h..............(3)
from (2):
⇒ 0.9*D = 40 - 0.1*B
⇒ D = ( 40 - 0.1*B ) / 0.9............(4)
(4) in (3):
⇒ 0.1*((40-0.1*B)/0.9) + 0.9*B = 60
⇒ B = 62.56 Lbmol/h............(5)
(5) in (1):
⇒ D = 100 - B
⇒ D = 37.44 Lbmol/h
∴ Lbmol = 0.45 Kmol
⇒ B = 62.56 Lbmol/h * ( 0.45 Kmol/ Lbmol ) = 28.152 Kmol/h
⇒ D = 37.44 Lbmol/h * ( 0.45 Kmol/h ) = 16.848 Kmol/h
Answer:
c. they are all used to diagnose medical conditions
Explanation:
Lactate dehydrogenase, aspartate aminotransfcrase, and creatine kinase all are used to diagnose medical conditions.
Answer:
Explanation:
The density of a substance can be found by using the formula
From the question
mass = 4 g
volume = 2 cm³
We have
We have the final answer as
Hope this helps you
Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
To calculate the initial temperature of the iron sample, use the equation q = m * c * T, where q is the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity, and T is the change in temperature which is 90.36 °C
To calculate the initial temperature of the iron sample, we can use the equation:
q = m * c * T
Where q is the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity, andT is the change in temperature. In this case, we know the mass of the iron sample, the specific heat capacity of iron, and the change in temperature of the water. By rearranging the equation, we can solve for the initial temperature of the iron sample.
Thus,
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
#SPJ12
Answer:
The polar compounds are soluble in water while non polar are insoluble in water.
Explanation:
Solvent is the that part of solution which is present in large proportion and have ability to dissolve the solute. In simplest form it is something in which other substance get dissolve. The most widely used solvent is water, other examples are toluene, acetone, ethanol, chloroform etc.
Water is called universal solvent because of high polarity all polar substance are dissolve in it. Hydrogen is less electronegative while oxygen is more electronegative and because of difference in electronegativity hydrogen carry the partial positive charge while oxygen carry partial negative charge.
Water create electrostatic interaction with other polar molecules. The negative end of water attract the positive end of polar molecules and positive end of water attract negative end of polar substance and in this way polar substance get dissolve in it.
Example:
when we stir the sodium chloride into water the cation Na⁺ ions are surrounded by the negative end of water i.e oxygen and anion Cl⁻ is surrounded by the positive end of water i.e hydrogen and in this way all salt is get dissolved.
The chemicals that can dissolve in a certain solvent to create a homogenous mixture known as a solution are said to be soluble chemicals. The compounds that are soluble are: , , and .
As per this,
Insoluble:
Thus, these are the classification of the compounds as per their solubility.
For more details regarding solubility, visit:
#SPJ6
Your question seems incomplete, the prpbable complete question is:
Predict whether the following compounds are soluble or insoluble in water. Soluble Insoluble PbCl2, BaSO4, KNO3, AgNO3, and CuBr2.
Answer:
(C3H8) produces 660 g of CO2 and 360 g of H2O
Explanation:
The balanced chemical equation for the combustion of propane (C3H8) is:
C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g)
This equation tells us that for every molecule of propane (C3H8) that reacts with 5 molecules of oxygen (O2), 3 molecules of carbon dioxide (CO2) and 4 molecules of water (H2O) are produced.
So, if we have 220. g of propane (C3H8), we can find the amount of CO2 and H2O produced by using the mole ratio from the balanced equation:
1 mole C3H8 reacts with 5 moles of O2 to produce 3 moles of CO2 and 4 moles of H2O
We can find the number of moles of C3H8 by dividing the mass by the molar mass of C3H8 (44 g/mol):
220 g / 44 g/mol = 5 moles C3H8
So, the number of moles of CO2 and H2O produced can be found by multiplying the number of moles of C3H8 by the mole ratio:
3 moles CO2 = 3 moles CO2/1 mole C3H8 * 5 moles C3H8 = 15 moles CO2
4 moles H2O = 4 moles H2O/1 mole C3H8 * 5 moles C3H8 = 20 moles H2O
Finally, we can convert the number of moles of CO2 and H2O to grams by multiplying by their molar masses (44 g/mol for CO2 and 18 g/mol for H2O):
15 moles CO2 * 44 g/mol = 660 g CO2
20 moles H2O * 18 g/mol = 360 g H2O
So, the combustion of 220 g of propane (C3H8) produces 660 g of CO2 and 360 g of H2O.
Answer: The mass of hydrogen sulfide that can be dissolved is 2.86 grams.
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the gas.
To calculate the molar solubility, we use the equation given by Henry's law, which is:
where,
= Henry's constant =
= partial pressure of hydrogen sulfide gas = 2.42 atm
Putting values in above equation, we get:
To calculate the mass of solute, we use the equation used to calculate the molarity of solution:
We are given:
Molarity of solution = 0.2105 M
Molar mass of hydrogen sulfide = 34 g/mol
Volume of solution = 400.0 mL
Putting values in above equation, we get:
Hence, the mass of hydrogen sulfide that can be dissolved is 2.86 grams.