Answer:
e. f2 < f < f1
Explanation:
According to Doppler's Effect:
......................................(1)
where:
are observed frequency and source frequency respectively.
S = velocity of sound in the air from a stationary source
are the velocity of the observer and the velocity of sound source with respect to a stationary frame of reference.
Here
Then eq. (1) becomes:
Now, the value:
Now the eq. (1) becomes
∵the direction of motion of the source is away from the observer so a negative sign has been introduced.
Now, the value:
To solve this problem it is necessary to apply the concepts related to density, such as the relationship between density and Volume.
The volume of a sphere can be expressed as
Here r is the radius of the sphere and V is the volume of Sphere
Using the expression of the density we know that
The density is given as
Now replacing the mass given and the actual density we have that the volume is
The radius then is,
Replacing,
The radius of a sphere made of this material that has a critical mass is 9.02 cm.
Answer:
amplitude = 14 cm; wavelength = 7 cm; period = 12 seconds
Explanation:
Answer:43.34 m
Explanation:
Given
acceleration(a)
Initial Velocity(u)=0 m/s
After 6 s fuel runs out
Velocity after 6 s
v=u+at
After this object will start moving under gravity
height reached in first 6 s
s=36 m
After fuel run out distance traveled in upward direction is
here v=0
u=12 m/s
Find the radius and period of the orbit.
Answer:
r = 2,026 10⁹ m and T = 2.027 10⁴ s
Explanation:
For this exercise let's use Newton's second law
F = m a
where the force is electric
F =
Acceleration is centripetal
a = v² / r
we substitute
r = (1)
let's look for the charge in the insulating sphere
ρ = q₂ / V
q₂ = ρ V
the volume of the sphere is
v = 4/3 π r³
we substitute
q₂ = ρ π r³
q₂ = 3 10⁻⁹ π 4³
q₂ = 8.04 10⁻⁷ C
let's calculate the radius with equation 1
r = 9 10⁹ 1.6 10⁻¹⁹ 8.04 10⁻⁷ /(9.1 10⁻³¹ 628 10³)
r = 2,026 10⁹ m
this is the radius of the electron orbit around the charged sphere.
Since the orbit is circulating, the speed (speed modulus) is constant, we can use the uniform motion ratio
v = x / t
the distance traveled in a circle is
x = 2π r
In this case, time is the period
v = 2π r /T
T = 2π r /v
let's calculate
T = 2π 2,026 10⁹/628 103
T = 2.027 10⁴ s
partial pressure in a mixture of two or more gases will be given by formula
= mole fraction of gas * total pressure
now here mole fraction is same as percentage of gas in the mixture
Now mole fraction of oxygen is 0.20095 (20.095%)
now here pressure of oxygen in the mixture is given as
so pressure due to oxygen in the mixture will be 0.342 atm
Answer:
20.095
Explanation:
7500 J were released in the explosion, how much kinetic energydid
each piece acquire?
Answer:
4500 J and 3000 J
Explanation:
According to conservation of momentum
Given that m_2 = 1.5 m_1 , so
the kinetic energy of each piece is
substituting the value of V1 in the above equation
Given that
K_1 + k_2 = 7500 J
1.5 K_2 + K_2 = 7500
K_2 = 7500 / 2.5
= 3000 J
this is the KE of heavier mass
K_1 = 7500 - 3000 = 4500 J
this is the KE of lighter mass
The question is about finding the kinetic energy acquired by each of two pieces of an object following an internal explosion, using principles of conservation of energy and momentum in physics.
The student has asked about an internal explosion that breaks an object into two pieces with different masses, releasing a certain amount of kinetic energy in the process. This question involves applying the principle of conservation of energy and momentum to find the kinetic energy acquired by each piece post-explosion.
Assuming piece 1 has a mass of m and piece 2 has a mass of 1.5m, the total mass of the system is 2.5m. Since 7500 J of energy was released in the explosion, to find the kinetic energy of each piece, we can use the fact that the total kinetic energy is equal to the energy released during the explosion. Let the kinetic energy of the smaller piece be K1 and of the larger piece be K2. Because the object was initially at rest and momentum must be conserved, the momenta of the two pieces must be equal and opposite. This relationship allows us to derive the ratio of the kinetic energies. We can solve for K1 and K2 proportionally. Finally, because the kinetic energy is a scalar quantity, adding the kinetic energies of the two pieces will equal the total energy released.
#SPJ3