Answer:
33.21% is the right answer.
Explanation:
0.04720 L * 0.02240 mol / L = 1.0573*10-3
mol Fe+2 = 1.0573* 10-3 mol = 5.2864*10-3
mass of Fe= 5.2864 * 10-3 = 0.29522g
% of Fe in sample = 0.29522 g Fe / 0.8890 g of sample * 100 = 33.21%
The number of moles of MnO4– added to the solution is 0.00106 mol. The moles of Fe2+ in the sample is 0.00530 mol. The grams of iron in the sample is 0.296 g and the percentage of iron in the sample is 33.33%.
The titration reaction between Fe2+ and MnO4– in acid solution is as follows: 5Fe2+ + MnO4– + 8H+ → 5Fe3+ + Mn2+ + 4H2O. Firstly, we can calculate the number of moles of MnO4– added to the solution using the formula volume X molarity. That is 0.0472 L X 0.02240 M = 0.00106 mol MnO4–. According to the balanced redox reaction, one mole of MnO4– reacts with five moles of Fe2+. Therefore, the moles of Fe2+ in the sample is 0.00106 mol MnO4– X 5 = 0.00530 mol Fe2+.
Next, we calculate the grams of iron in the sample. The molarmass of iron is approximately 55.85 g/mol, thus the grams of iron in the sample are 0.00530 mol Fe2+ X 55.85 g/mol = 0.296 g Fe2+. Finally, we find the percentage of iron in the sample by mass = (mass of iron in the sample / total mass of the sample) X 100%. Therefore, the percentage is (0.296 g / 0.8890 g) X 100% = 33.33%.
#SPJ3
the form of compound
O₂
CaCO₃
Ca(OH)₂
Which among the following will make lime water look milky
option C) Ca(OH)₂
True
False