Answer:
A bridge suspended by cables
Explanation:
Both objects represent a contact force (in this case, normal force) acting on each other. The force occurs since both objects are in direct physical contact.
Answer:
Explanation:
From the question we are told that
The primary voltage is
The secondary voltage is
Generally from the transformer equation we have that
So
=>
Therefore the ratio of the number of turns in the secondary to the number of turns in the primary is
B.)Plants that have broad leaves to capture sunlight and long roots to penetrate the soil.
C.)Animals with thin fur that allows them to get rid of heat efficiently.
D.)Animals with long tongues for capturing prey and sticky pads for climbing trees.
Answer:
the awnser is A becuse the hair help.
B. What is the change in the total momentum of the pair?
C. What is the magnitude of the change in the momentum Δp2, of mass M2?
Answer:
a). ΔP1=-2.4
b). Pp=0 F=0
c). ΔP2=2.4
Explanation:
Initial momentum
Final momentum
The change of momentum m1 is:
a).
ΔP1=
ΔP1=
ΔP1=
ΔP1=
ΔP1=
b).
The law of conservation of energy in this case there is not external forces so the momentum of the pair change is equal to zero
P=0
Fx=0
c).
ΔP1+ΔP2=0
ΔP2=-ΔP1
ΔP2=-
ΔP2=
The magnitude of the change in momentum of mass M1 is 2400 Daltons*m/s. The change in the total momentum of the pair is 2000 Daltons*m/s. The magnitude of the change in momentum of mass M2 is -400 Daltons*m/s.
A. To find the magnitude of the change in momentum of mass M1, we use the formula Δp1 = m1 * Δv1, where m1 is the mass of M1 and Δv1 is the change in velocity of M1. Since M1 simply changes direction, its change in velocity is equal to 2 times its original velocity. Therefore, Δp1 = m1 * (2v1) = 6 * (2 * 200) = 2400 Daltons*m/s.
B. The change in the total momentum of the pair is equal to the sum of the changes in momentum of M1 and M2. Since M2 also changes direction, its change in velocity is equal to 2 times its original velocity. Therefore, the change in the total momentum is Δp1 + Δp2 = 2400 Daltons*m/s + (-400 Daltons*m/s) = 2000 Daltons*m/s.
C. To find the magnitude of the change in momentum of mass M2, we use the same formula as in part A, but with the values for M2. Δp2 = m2 * Δv2 = 1 * (2 * (-200)) = -400 Daltons*m/s.
#SPJ3
Answer:
Explanation:
In this case, power is the rate of transferring heat per unit time:
The heat is given by the formula of the latent heat of fusion, since the ice is melting.
Here m is the ice's mass and is the heat of fusion of ice. Recall that one day has 86400 seconds. Replacing (2) in (1) and solving:
Dawn is trying to figure out how much weight she can push with her strength, or what her maximum pushing force is, across the room. She could do an experiment to find out.
She must first prepare a testing space with a flat, smooth surface to reduce friction. She can then progressively add weights to a cart or other object and use all of her strength to try to push it across the room. She can determine her maximum pushing force by noting the heaviest weight she can move. For a variety of jobs, including moving furniture or participating in physical sports that call for pushing heavy things, this knowledge can be essential.
To know more about physical sports, here
#SPJ2
Answer:
Muscular strength
Explanation:
She is testing her strength while pushing the weights