Answer:
Explanation:
The impulse has as an expression
I = ∫ F dt
In addition, on impulse of isolated systems is
I =ΔP = m vf - m v₀
Let's replace
F dt = m (vf -vo)
The force in these shocks laqueunxcyerpoesjerce on the other, using the law of action and reaction state forces has the same magnitude and the time of the shock is equal for the two bodies, this implies that the impulse is equal for the two bodies
Let's check the answers
a) False as the forces are of action and reaction the impulse must be equal
b) False
c) True. Why do we have an action and reaction stop
d False
e) false
In collision between two objects, despite difference in their masses, both objects receive the same impulse, as per Newton's third law.
In a collision between two objects with unequal masses, according to Newton's third law of motion, 'For every action, there is an equal and opposite reaction', the magnitude of the impulse imparted to the lighter object by the heavy object is exactly the same as the magnitude of the impulse imparted to the heavier object by the lighter one.
This is regardless of the masses or speeds of the objects involved. The direction of these impulses will be opposite, but their magnitudes will be the equal. So, option c. 'both objects receive the same impulse' is correct.
#SPJ6
What is the kinetic energy of an electron in a circular orbit around the gold nucleus?
Answer:
a) F = -1.82 10⁻¹⁵ N, b) K = 9.1 10⁻¹⁶ J
Explanation:
a) To calculate the force between the nucleus and the electrons, let's use the Coulomb equation
F = k q Q / r²
as the nucleus occupies a very small volume compared to electrons, we can suppose it as punctual
let's calculate
F = 9 10⁹ (-1.6 10⁻¹⁹) (79 1.6 10⁻¹⁹) / (10⁻¹⁰)²
F = -1.82 10⁻¹⁵ N
b) they ask us for kinetic energy
let's use Newton's second law
F = m a
acceleration is centripetal
a = v² / r
we substitute
F = m v² / r
v = √ (F r / m)
v = √ (1.82 10⁻¹⁵ 10⁻¹⁰ / 9.1 10⁻³¹)
v = √ (0.2 10⁻¹⁶)
v = 0.447 10⁸ m / s
kinetic energy is
K = ½ m v²
K = ½ 9.1 10⁻³¹ (0.447 10⁸)²
K = 0.91 10⁻¹⁵ J
K = 9.1 10⁻¹⁶ J
Answer:
Explanation:
Step one:
Given
mass m= 0.32kg
intital velocity, u= 14m/s
final velocity v= 22m/s
time= 0.06s
Step two:
Required
Force F
the expression for the force is
F=mΔv/t
F=0.32*(22-14)/0.06
F=(0.32*8)/0.06
F=2.56/0.06
F=42.67N
The average force exerted on the bat 42.67N
Answer:
The width of the slit is 0.167 mm
Explanation:
Wavelength of light,
Distance from screen to slit, D = 88.5 cm = 0.885 m
The distance on the screen between the fifth order minimum and the central maximum is 1.61 cm, y = 1.61 cm = 0.0161 m
We need to find the width of the slit. The formula for the distance on the screen between the fifth order minimum and the central maximum is :
where
a = width of the slit
a = 0.000167 m
a = 0.167 mm
So, the width of the slit is 0.167 mm. Hence, this is the required solution.
4.0
5.0
2.4
1.6
Answer and I will give you brainiliest
Answer:
Explanation:
Answer:
False
Explanation:
Answer:
False
Explanation:
A P E X
Answer:
speed when it reaches y = 4.00cm is
v = 14.9 g.m/s
Explanation:
given
q₁=q₂ =2.00 ×10⁻⁶
distance along x = 3.00cm= 3×10⁻²
q₃= 4×10⁻⁶C
mass= 10×10 ⁻³g
distance along y = 4×10⁻²m
r₁ = = = 3.61cm = 0.036m
r₂ = = = 5cm = 0.05m
electric potential V =
change in potential ΔV =
ΔV = , where 2.00μC
ΔV =
ΔV = 2 × 9×10⁹ × 2×10⁻⁶ ×
ΔV= 2.789×10⁵
= ΔV × q₃
ˣ 10×10⁻³ ×v² = 2.789×10⁵× 4 ×10⁻⁶
v² = 223.12 g.m/s
v = 14.9 g.m/s
The speed of the charge q₃ when it starts from rest at y = 2 cm and reaches y = 4 cm is; v = 14.89 m/s
We are given;
Charge 1; q₁ = 2.00 μC = 2 × 10⁻⁶ C
Charge 2; q₂ = 2.00 μC = 2 × 10⁻⁶ C
Distance of charge 1 along x = 3 cm = 3 × 10⁻² m
Distance of charge 2 along x = -3 cm = -3 × 10⁻² m
Charge 3; q₃ = +4.00 μC = 4 × 10⁻⁶ C
mass; m = 0.01 g
distance of charge 3 along y = 4 cm = 4 × 10⁻² m
q₃ starts from rest at y = 2 × 10⁻² m and reaches y = 4 × 10⁻² m.
Thus;
Distance of charge 1 from the initial position of q₃;
r₁ = √((3 × 10⁻²)² + ((2 × 10⁻²)²)
r₁ = 0.0361 m
Distance of charge 2 from the final position of q₃;
r₂ = √((3 × 10⁻²)² + ((4 × 10⁻²)²)
r₂ = 0.05 m
Now, formula for electric potential is;
V = kq/r
Where k = 9 × 10⁹ N.m²/s²
Thus,change in potential is;
ΔV = V₁ - V₂
Now, Net V₁ = 2kq₁/r₁
Net V₂ = 2kq₂/r₂
Thus;
ΔV = 2kq₁/r₁ - 2kq₂/r₂
ΔV = (2 × 9 × 10⁹)[(2 × 10⁻⁶/0.0361) - (2 × 10⁻⁶/0.05)]
ΔV = 277229.92 V
Now, from conservation of energy;
½mv² = q₃ΔV
Thus;
½ × 0.01 × v² = 4 × 10⁻⁶ × 277229.92
v² = 2 × 4 × 10⁻⁶ × 277229.92/0.01
v = √(221.783936)
v = 14.89 m/s
Read more about point charges at;brainly.com/question/13914561