How to Measure the mass of a coin using a triple beam balance

Answers

Answer 1
Answer:

Answer:

https://youtu.be/stW-C7F7QOg


Related Questions

Tarzan, whose mass is 96 kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets go, his center of mass is at a height 2.1 m above the ground and the bottom of his dangling feet are at a height 1.3 above the ground. When he first hits the ground he has dropped a distance 1.3, so his center of mass is (2.1 - 1.3) above the ground. Then his knees bend and he ends up at rest in a crouched position with his center of mass a height 0.4 above the ground.Consider the point particle system. What is the speed v at the instant just before Tarzan's feet touch the ground?
Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass m, and the surface of the bridge is a height h above the water. The bungee cord, which has length L when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant k. Kate doesn't actually jump but simply steps off the edge of the bridge and falls straight downward. Kate's height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use g for the magnitude of the acceleration due to gravity.
. Set the applied force to Force necessary to Keep the box Moving without accelerating. Restart the animation. Just before the box hits the wall, stop the animation. What can you tell me about relative magnitudes of the frictional force and the applied force
What is the frequency of an xray with a wavelength of 2x10-10m?a) 1.5x1018hzb) 6.67x10-19hzc) 3x108hzd) 1.5hzShow calculation
Alex throws a 0.15-kg rubber ball down onto the floor. The ball’s speed just before impact is 6.5 m/s, and just after is 3.5 m/s. If the ball is in contact with the floor for 0.025 s, what is the magnitude of the average force applied by the floor on the ball?

A 75 kg man starts climbing a ladder that leans against a wall. If the weight of the ladder is negligible, determine how far up the ladder the man can climb before the ladders starts to slip. The coefficient of friction on both surfaces is μS=0.25

Answers

The man can climb \bold { X (max) = 0.25* L* tan \alpha }, before  the ladders starts to slip.  

   

A - point at the top of the ladder  

B - point at the bottom of the ladder  

C - point where the man is positioned in the ladder  

L- the length of the ladder  

α - angle between ladder and ground  

x - distance between C and B  

 

The forces act on the ladder,  

Horizontal reaction force (T) of the wall against the ladder  

Vertical (upward) reaction force (R) of ground against the ladder.  

Frictionalhorizontal ( to the left ) force (F)  

Vertical( downwards) of the man,

mg = 75 Kg x 9.8 m/s² = 735 N  

in static conditions,  

∑Fx = T - F = 0                   Since,  T = F  

∑Fy = mg - R = 0                Since,  735 - R = 0, R = 735  

∑ Torques(b) = 0  

In point B the torque produced by forces R and F is Zero  

Then:  

∑Torques(b) = 0        

And the arm lever for each force,  

mg = 735  

   

Since, ∑Torques(b) = 0    

 \bold {735* x* cos\alpha  = F* L* sin\alpha    }     Since,T = F  

 

\bold {F = \frac {735* x* cos\apha }{L* sin\alpha }}      \bold {  \frac {cos \alpha } { sin\alpha }=  cot\alpha =\frac 1{tan\alpha}}  

\bold {F = \frac {735* x* cos\apha }{L }}    

\bold {F =  735* x* tan\alpha }}  

F < μR the ladder will starts slipping over the ground  

μ(s) = 0.25    

 

\bold { X (max) = 0.25* L* tan \alpha }

Therefore, the man can climb \bold { X (max) = 0.25* L* tan \alpha }, before  the ladders starts to slip. \

To know more about  Torque,

brainly.com/question/6855614  

Answer:

x (max) = 0,25*L*tanα

Explanation:

Letá call  

A: point at the top of the ladder

B: the point at the bottom of the ladder

C: point where the man is up the ladder

L the length of the ladder

α angle between ladder and ground

"x" distance between C and B

Description

The following forces act on the ladder

Point A: horizontal (to the right)  reaction (T) of the wall against the     ladder

Point B : Vertical (upwards) reaction (R)  of ground against the ladder

               frictional horizontal ( to the left ) force (F)

Point C : Weight (vertical downwards)) of the man mg

mg = 75 Kg * 9,8 m/s²       mg = 735 [N]

Then in static conditions:

∑Fx = T - F = 0    ⇒   T = F

∑Fy = mg - R = 0       ⇒   735 - R = 0     ⇒  R = 735

∑Torques(b) = 0

Note: In point B the torque produced by forces R and F are equal to 0

Then:

∑Torques(b) = 0      

And the arm lever for each force is:

mg = 735

d₁ for mg     and d₂  for T

cos α = d₁/x     then    d₁ = x*cosα

sin α  = d₂ / L   then    d₂ = L*sinα

Then:

∑Torques(b) = 0     ⇒   735*x*cosα  - T*L*sinα = 0

735*x*cosα =  T*L*sinα

T = F then       735*x*cosα = F*L*sinα

F = (735)*x*cosα/L*sinα         cos α / sinα = cotgα = 1/tanα

F = (735)*x*cotanα/L     or   F = (735)*x/L*tanα

When F < μ* R  the ladder will stars slippering over the ground

μ(s) = 0,25           0,25*R = 735*x/L*tanα

x   = 0,25*R*tanα*L/735

But R = mg = 735 then

0,25*L*tanα = x

Then  x (max) = 0,25*L*tanα

Average wavelength of radio waves​

Answers

The average wavelength of radio waves ​ranges from roughly two millimeters to more than 150 kilometers. The wavelengths of radio waves are the longest in the electromagnetic spectrum

What is Wavelength?

It can be understood in terms of the distance between any two similar successive points across any wave for example wavelength can be calculated by measuring the distance between any two successive crests.

It is the total length of the wave for which it completes one cycle.

The wavelength is inversely proportional to the frequency of the wave as from the following relation.

C = νλ

They also have the lowest frequencies, ranging from around 4,000 cycles per second, or 3 kilohertz, to roughly 280 billion hertz, or 280 gigahertz.

The wavelengths of radio waves are the longest in the electromagnetic spectrum, ranging from roughly two millimeters to more than 150 kilometers.

To learn more about wavelength from here, refer to the link given below;

brainly.com/question/7143261

#SPJ6

Answer:

Radio waves have frequencies as high as 300 gigahertz(GHz)to as low as 30 hertz(Hz).At 300 GHz the corresponding wavelength is 1mm and at 30Hz is 10,000 km

You have 5 cats and they each have a mass of 4kg per cat. What is the mass of all of them together?

Answers

Answer:

It would be 20kg

Explanation:

This would be just 5x4 as there are 5 cats and each are 4kg. You can also add 4, 5 times as well.

I hope Im correct

How much work would it take to push two protons very slowly from a separation of 2.00×10−10 m (a typical atomic distance) to 3.00×10−15 m (a typical nuclear distance)?

Answers

Electric potential is the amount of work needed to move a unit charge from a point to a specific point against an electric field. The work would it take to push two protons will be 7.7×10⁻¹⁴.

What is electric potential?

Electric potential is the amount of work needed to move a unit charge from a point to a specific point against an electricfield.

The given data in the problem is;

q is the charge= 1.6 ×10⁻¹⁹ C

V is the electric potential

r₁ is the first separation distance= 2.00×10−10 m

r₂ is the second  separation distance=  3.00×10−15 m

The electric potential generated by the proton at rest at the two points, using the formula:

Firstly the electric potential at loction 1

\rm V=(Kq)/(r)  \n\n v_i= 9* 10^9 * (1.6*10^(-19))/(2.0*10^(-10))

The electric potential at loction 2

V_f = 9 * 10^9 (1.6 * 10^(-19))/(3.0*10^(-15)) \n\n \rm v_f= 4.8 *10^5 \ V

The product of difference of electric potential and charge is defined as the workdone.

\rm W= q \triangle V \n\n \rm W= 1.6 * 10^-19 *( 4.8*10^5 -7.2)  \n\n \rm W= 7.7 * 10^(-14)

Hence the work would it take to push two protons will be 7.7×10⁻¹⁴.

To learn more about electric potential work refer to the link.

brainly.com/question/12707371

We can visualize the problem in another way, which is equivalent but easier to solve: let's imagine we hold one proton in the same place, and we move the other proton from a distance of 2.00×10−10 m to a distance of 3.00×10−15 m from the first proton. How much work is done?

The work done is equal to the electric potential energy gained by the proton:

W=q \Delta V

where q=1.6 \cdot 10^(-19)C is the charge of the proton and \Delta V is the potential difference between the final position and the initial position of the proton. To calculate this \Delta V, we must calculate the electric potential generated by the proton at rest at the two points, using the formula:

V=k(Q)/(r)

where k=9.0 \cdot 10^9 N m^2 C^(-2) is the Coulomb constant and Q is the proton charge. Substituting the initial and final distance of the second proton, we find

V_i = (9.0 \cdot 10^9 )(1.6 \cdot 10^(-19))/(2.0 \cdot 10^(-10))=7.2 V

V_f = (9.0 \cdot 10^9 )(1.6 \cdot 10^(-19))/(3.0 \cdot 10^(-15))=4.8 \cdot 10^5 V

Therefore, the work done is

W=q \Delta V=(1.6 \cdot 10^(-19)C)(4.8 \cdot 10^5 V-72 V)=7.7 \cdot 10^(-14) J

A heavy object and a light object are dropped from the same height. If we neglect air resistance, which will hit the ground first?

Answers

Answer:

None, both objects will hit ground at the same time.

Explanation:

  • Assuming no air resistance present, and that both objects start from rest, we can apply the following kinematic equation for the vertical displacement:

        \Delta h = (1)/(2)*g*t^(2)  (1)

  • As the left side in (1) is the same for both objects, the right side will be the same also.
  • Since g is constant close to the surface of the Earth, it's also the same for both objects.
  • So, the time t must be the same for both objects also.

In an experiment to measure the acceleration of g due to gravity, two values, 9.96m/s (s is squared) and 9.72m/s (s is squared), are determined. Find (1) the percent difference of the measurements, (2) the percent error of each measurement, and (3) the percent error of their mean. (Accepted value:g=9.80m/s (s is squared))

Answers

Answer:

a)2.46 %

b)For 1 :101.52 %

For 2 : 99.08 %

c)100..4 %

Explanation:

Given that

g₁ = 9.96 m/s²

g₂ = 9.72 m/s²

The actual value of  g = 9.8 m/s²

a)

The difference Δ g =  9.96 -9.72 =0.24  m/s²

The\ percentage\ difference=(0.24)/(9.72)* 100=2.46\ percentage\n

b)

For first one :

Error\ in\ the\ percentage =(9.96)/(9.81)* 100 =101.52\ perncetage

For second  :

Error\ in\ the\ percentage =(9.72)/(9.81)* 100 =99.08\ perncetage

c)

The mean g(mean )

g(mean )=(9.96+9.72)/(2)\ m/s^2\ng(mean)=9.84\ m/s^2

The\ percentage=(9.84)/(9.8)* 100=100.40\ percentage

a)2.46 %

b)For 1 :101.52 %

For 2 : 99.08 %

c)100..4 %

Final answer:

The percent difference between the two measurements is 2.44%. The percent error for the first measurement is 1.63%, and for the second measurement is 0.82%. The percent error of their mean is 0.41%.

Explanation:

In physics, the percent difference is calculated by subtracting the two values, taking the absolute value, dividing by the average of the two values, and then multiplying by 100. Therefore, the percent difference between the two measurements 9.96m/s² and 9.72m/s² is:

|(9.96-9.72)|/((9.96+9.72)/2)*100 = 2.44%

The percent error involves taking the absolute difference between the experimental value and the accepted value, divided by the accepted value, then multiplied by 100. So, the percent error for the two measurements with accepted value of 9.80m/s² are:

For 9.96m/s²: |(9.96-9.80)|/9.80*100 = 1.63%

For 9.72m/s²: |(9.72-9.8)|/9.8*100 = 0.82%

The percent error of the mean involves doing the above but using the mean of the experimental measurements:

|(Mean of measurements - Accepted value)|/Accepted value * 100 |(9.96+9.72)/2-9.8|/9.8*100 = 0.41%

Learn more about Percent Difference and Error here:

brainly.com/question/33836796

#SPJ3