As we go up the y-axis, the number of sproutedbean seeds increase (option B).
Graph is a data chart intended to illustrate the relationship between a set (or sets) of numbers (quantities, measurements or indicative numbers) and a reference set.
In a graph, there are two axes as follows;
According to this question, a graph of number of sprouted bean seeds on the y-axis is plotted against temperature on the x-axis.
We can observe that as we go up the y-axis, the number of sprouted bean seeds increase.
Learn more about graphs at: brainly.com/question/2938738
#SPJ1
If the ball, the cliff, and the ground are all on the Earth, and everything is bathed in an ocean of air, then the ball's acceleration will decrease as it falls, because of the friction of air resistance. If it has far enough to fall, it's possible that its acceleration may even become zero, and the ball settle on a constant speed (called "terminal velocity") before it hits the ground.
But until we get to College-level Physics and Engineering, we ALWAYS ignore that stuff, and assume NO AIR RESISTANCE. The ball is in FREE FALL, and the ONLY force acting on it is the force of gravity. We also assume that the distance of the fall is small enough so that the value of gravity is constant over the entire fall.
Under those assumptions, there's nothing present to change the acceleration of the falling ball. It's 9.81 m/s² when it rolls off the edge of the cliff, and it's 9.81 m/s² when it hits the ground.
Answer:
Explanation:
Let T and U represent the tensions in the 41° and 63° cables, respectively. In order for the system to be stationary, the horizontal components of these tensions must balance, and the vertical components of these tensions must total 200 N.
Tcos(41°) =Ucos(63°) . . . . . balance of horizontal components
U = Tcos(41°)/cos(63°) . . . . write an expression for U
__
The vertical components must total 200 N, so we have ....
Tsin(41°) +Usin(63°) = 200
Tsin(41°) +Tcos(41°)sin(63°)/cos(63°) = 200
T(sin(41°)cos(63°) +cos(41°)sin(63°))/cos(63°) = 200
T = 200cos(63°)/sin(41° +63°) ≈ 93.6 . . . newtons
U = 200cos(41°)/sin(41° +63°) ≈ 155.6 . . . newtons
__
The vertical cable must have sufficient tension to balance the weight of the traffic light, so its tension is 200 N.
Then the tensions in the 3 cables are ...
41°: 93.6 N
63°: 155.6 N
90°: 200 N
The tension in each of the three cables are 94.29, 155.56 and 200 Newton respectively.
Given the following data:
First of all, we would determine the third tension force based on the vertical component as follows:
Next, we would apply Lami's theorem to resolve the forces acting on the traffic light at equilibrium:
For the horizontal component:
....equation 1.
For the vertical component:
...equation 2.
Substituting eqn. 1 into eqn. 2, we have:
For the first tension:
Read more on tension here: brainly.com/question/4080400
The force of gravity changes as the mass of one object doubles. As the mass of one object is doubled then the force between the objects also gets doubled.
Force is an influence which can change the motion of an object through the application of an external force. A force can cause an object with the mass to change its velocity, that is the object undergo acceleration.
Force is directly proportional to the mass of the object and the acceleration of the object. If we double the mass of one of the objects, then we double the strength of the force. If we double the masses of both the objects, then we quadruple the strength of force.
Learn more about Force here:
#SPJ2
Answer:
Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.
Explanation:
Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.
Answer:
51 mph
Explanation:
Answer:
Work = 1167.54 J
Explanation:
The amount of non-conservative work here can be given by the difference in kinetic energy and the potential energy. From Law of conservation of energy, we can write that:
Gain in K.E = Loss in P.E + Work
(0.5)(m)(Vf² - Vi²) - mgh = Work
where,
m = mass of boy = 60 kg
Vf = Final Speed = 8.5 m/s
Vi = Initial Speed = 1.6 m/s
g = 9.8 m/s²
h = height drop = 1.57 m
Therefore,
(0.5)(60 kg)[(8.5 m/s)² - (1.6 m/s)²] - (60 kg)(9.8 m/s²)(1.57 m) = Work
Work = 2090.7 J - 923.16 J
Work = 1167.54 J