Answer:
Explanation:
The uncertainty in energy is given by
here h is plank's constant which value is and is the time interval which is given as
So using all the parameters the smallest possible uncertainty in electrons energy is
Answer:
A. The wires exert equal magnitude attractive forces on each other.
Explanation:
Magnetic field due to current i on current 2i
B₁ = 10⁻⁷ x 2 i / r where r is distance between the two wires
Force on wire II due to wire I per unit length
= magnetic field x current in wire II
= B₁ x 2 i
= [ 10⁻⁷ x 2 i / r ] x 2i
= 4 x 10⁻⁷ i² / r
Magnetic field due to current 2i on current i
B₂ = 10⁻⁷ x 4 i / r where r is distance between the two wires
Force on wire I due to wire II per unit length
= magnetic field x current in wire I
= B₂ x i
= [ 10⁻⁷ x 4 i / r ] x i
= 4 x 10⁻⁷ i² / r
So final forces on each wire are same .
This force will be attractive in nature . The direction of force can be known from fleming's right hand rule .
d1=_____m
Part B:
d2=______m
Answer:
Explanation:
In projectile motion , range of projectile is given by the expressions
R = u²sin2θ / g
where u is velocity of projectile.
u = 27 m/s θ = 50
12 = 27² sin 2θ / 9.8
sin 2θ = .16
θ = 9.2 / 2
= 4.6
When we place 90- θ in place of θ , in the formula of range , we get the same value of projectile. hence at 85.4 ° , the range will be same.
Answer:
Lifetime = 4.928 x 10^-32 s
Explanation:
(1 / v2 – 1 / c2) x2 = T2
T2 = (1/ 297900000 – 1 / 90000000000000000) 0.0000013225
T2 = (3.357 x 10^-9 x 1.11 x 10^-17) 1.3225 x 10^-6
T2 = (3.726 x 10^-26) 1.3225 x 10^-6 = 4.928 x 10^-32 s
To find the proper lifetime of the particle, we can use the time dilation equation and the Lorentz factor. Plugging in the given values, we find that the proper lifetime of the particle is approximately 5.42 × 10^-9 seconds.
To find the proper lifetime of the particle, we can use the time dilation equation, which states that the proper time (time experienced in the frame of reference of the particle) is equal to the time observed in the laboratory frame of reference divided by the Lorentz factor. The Lorentz factor can be calculated using the equation γ = 1/√(1 - (v/c)^2), where v is the velocity of the particle and c is the speed of light. Given that the particle is moving at 0.993c, the Lorentz factor is approximately 22.82.
Next, we can use the equation Δx = βγcτ, where Δx is the length of the track, β is the velocity of the particle in units of the speed of light (v/c), γ is the Lorentz factor, c is the speed of light, and τ is the proper lifetime of the particle. Plugging in the given values, we have 1.15 mm = 0.993 * 22.82 * c * τ. Solving for τ, we find that the proper lifetime of the particle is approximately 5.42 × 10^-9 seconds.
#SPJ3
Answer:
The maximum spring compression = 3.21 m
Explanation:
The height of the circus performer above the platform connected to string material = 5.8 m
Let the maximum compression of the spring from the impact of the circus performer be x.
According to the law of conservation of energy, the difference in potential energy of the circus performer between the initial height and the level at which spring is compressed to is equal to the work done on the spring to compress it by x
Workdone on the spring by the circus performer = (1/2)kx²
where k = spring constant = 1200 N/m
Workdone on the spring by the circus performer = (1/2)(1200)x² = 600x²
The change in potential energy of the circus performer = mg (5.8 + x)
m = mass of the circus performer = 70 kg
g = acceleration due to gravity = 9.8 m/s²
The change in potential energy of the circus performer = (70)(9.8)(5.8 + x) = (3978.8 + 686x)
600x² = 3978.8 + 686x
600x² - 686x - 3978.8 = 0
Solving this quadratic equation
x = 3.21 m or - 2.07 m
Since the negative answer doesn't satisfy the laws of physics, our correct answer is 3.21 m
Hope this Helps!!!
B. What is the change in the total momentum of the pair?
C. What is the magnitude of the change in the momentum Δp2, of mass M2?
Answer:
a). ΔP1=-2.4
b). Pp=0 F=0
c). ΔP2=2.4
Explanation:
Initial momentum
Final momentum
The change of momentum m1 is:
a).
ΔP1=
ΔP1=
ΔP1=
ΔP1=
ΔP1=
b).
The law of conservation of energy in this case there is not external forces so the momentum of the pair change is equal to zero
P=0
Fx=0
c).
ΔP1+ΔP2=0
ΔP2=-ΔP1
ΔP2=-
ΔP2=
The magnitude of the change in momentum of mass M1 is 2400 Daltons*m/s. The change in the total momentum of the pair is 2000 Daltons*m/s. The magnitude of the change in momentum of mass M2 is -400 Daltons*m/s.
A. To find the magnitude of the change in momentum of mass M1, we use the formula Δp1 = m1 * Δv1, where m1 is the mass of M1 and Δv1 is the change in velocity of M1. Since M1 simply changes direction, its change in velocity is equal to 2 times its original velocity. Therefore, Δp1 = m1 * (2v1) = 6 * (2 * 200) = 2400 Daltons*m/s.
B. The change in the total momentum of the pair is equal to the sum of the changes in momentum of M1 and M2. Since M2 also changes direction, its change in velocity is equal to 2 times its original velocity. Therefore, the change in the total momentum is Δp1 + Δp2 = 2400 Daltons*m/s + (-400 Daltons*m/s) = 2000 Daltons*m/s.
C. To find the magnitude of the change in momentum of mass M2, we use the same formula as in part A, but with the values for M2. Δp2 = m2 * Δv2 = 1 * (2 * (-200)) = -400 Daltons*m/s.
#SPJ3