a painting in an art gallery has height h and is hung so that its lower edge is a distance d above the eye of an observer. How far from the wall should the observer stand to get the best view?

Answers

Answer 1
Answer:

Solution:

With reference to Fig. 1

Let 'x' be the distance from the wall

Then for \DeltaDAC:

tan\theta = (d)/(x)

\theta = tan^(-1) (d)/(x)

Now for the \DeltaBAC:

tan\theta = (d + h)/(x)

\theta = tan^(-1) (d + h)/(x)

Now, differentiating w.r.t x:

(d\theta )/(dx) = (d)/(dx)[tan^(-1) (d + h)/(x) -  tan^(-1) (d)/(x)]

For maximum angle, (d\theta )/(dx) = 0

Now,

0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} -  tan^{-1} \frac{d}{x}][/tex]

0 = (-(d + h))/((d + h)^(2) + x^(2)) -(-d)/(x^(2) + d^(2))

(-(d + h))/((d + h)^(2) + x^(2)) = \frac{{d}{x^(2) + d^(2)}

After solving the above eqn, we get

x = \sqrt{(d)/(d + h)}

The observer should stand at a distance equal to x = \sqrt{(d)/(d + h)}

Answer 2
Answer:

Final answer:

For optimum viewing of a painting in a gallery, an observer should position themselves a distance away from the painting calculated using Pythagoras theorem, forming a right-angled triangle with the painting and the floor. This distance can be expressed as c = √[(h/2 + d)² + (h/2)²], where h is the height of the painting and d is the height from the observer's eye to the bottom of the painting.

Explanation:

In the physics of optics, the viewer should position themselves to where they form a right-angled triangle with the ceiling and the painting leading to the best viewing experience. This is widely known as the 'normal viewing distance'.

Given that the painting has a height h and its lower edge is at a distance d above the observer's eye, the observer should stand a distance away from the wall, which can be calculated using Pythagoras' theorem in right triangles, which states that the square of the hypotenuse (c) is equal to the sum of the square of the other two sides (a and b), i.e., c² = a² + b²

Since the painting height and viewer height forms the right-angle in this case, we have: a = (h/2 + d), and b = h/2. Substituting a and b in Pythagoras equation, we can solve for c which is the required distance: c = √[(h/2 + d)² + (h/2)²]

Learn more about Optimum viewing distance here:

brainly.com/question/31544283

#SPJ3


Related Questions

Two microwave frequencies are authorized for use in microwave ovens: 895 and 2560 mhz. calculate the wavelength of each.
A car (m = 2000 kg) is going around an unbanked curve at the recommended speed of 11m/s (24.6 MPH). (a) If the radius of the curvature of the path is 25m and the coefficient of static friction between the rubber tires and the road is µs = 0.70, does the car skid as it goes around the curve? (b) What will happen if the driver ignores the highway speed limit sign and travels at 18 m/s (40.3 MPH)? (c) What speed is safe for traveling around the curve if the road surface is wet from a recent rainstorm and the coefficient of static friction between the wet roud and the rubber tires is µs = 0.50?
Select the correct answer.Which statement is true if the refractive index of medium A is greater than that of medium B? A. O B. Total internal reflection is possible when light travels from air to medium B to medium A. Total internal reflection is possible when light travels from medium A to medium B. Total internal reflection is possible when light travels from medium B to medium A. D. Total internal reflection is possible when light travels from air to medium A. E. Total internal reflection is possible when light travels from air to medium B. C C.
The spring is used in a spring gun to project a 10.0 g plastic ball. In the gun, the spring is compressed by 10.0 cm before the gun is fired. How fast is the ball traveling after the gun is fired?
Which state of matter is most similar to solids

Observer 1 rides in a car and drops a ball from rest straight downward, relative to the interior of the car. The car moves horizontally with a constant speed of 3.80 m/s relative to observer 2 standing on the sidewalk.a) What is the speed of the ball 1.00 s after it is released, as measured by observer 2?

b) What is the direction of travel of the ball 1.00 s after it is released, as measured relative to the horizontal by observer 2?

Answers

a) 10.5 m/s

While for observer 1, in motion with the car, the ball falls down straight vertically, according to observer 2, which is at rest, the ball is also moving with a horizontal speed of:

v_x = 3.80 m/s

As the ball falls down, it also gains speed along the vertical direction (due to the effect of gravity). The vertical speed is given by

v_y = u_y + gt

where

u_y =0 is the initial vertical speed

g = 9.8 m/s^2 is the acceleration of gravity

t is the time

Therefore, after t = 1.00 s, the vertical speed is

v_y = 0 + (9.8)(1.00)=9.8 m/s

And so the speed of the ball, as observed by observer 2 at rest, is given by the resultant of the horizontal and vertical speed:

v=√(v_x^2 +v_y^2)=√((3.8)^2+(9.8)^2)=10.5 m/s

b) \theta = -68.8^(\circ)

As we discussed in previous part, according to observer 2 the ball is travelling both horizontally and vertically.

The direction of travel of the ball, according to observer 2, is given by

\theta = tan^(-1) ((v_y)/(v_x))=tan^(-1) ((-9.8)/(3.8))=-68.8^(\circ)

We have to understand in which direction is this angle measured. In fact, the car is moving forward, so v_x has forward direction (we can say it is positive if we take forward as positive direction).

Also, the ball is moving downward, so v_y is negative (assuming upward is the positive direction). This means that the direction of the ball is forward-downward, so the angle above is measured as angle below the positive horizontal direction:

\theta = -68.8^(\circ)

Susan’s 10 kg baby brother Paul sits on a mat. Susan pulls the mat across the floor using a rope that is angled 30° above the floor. The tension is a constant 30 N and the coefficient of friction is 0.20. Use work and energy to find Paul’s speed after being pulled 3.0 m.

Answers

Final answer:

In this problem, we have calculated the work done by Susan pulling her baby brother on a mat and the work done against friction. The net work done, which is the work done by Susan's pulling minus the work done against friction, is transformed into kinetic energy, giving us the baby's speed after being pulled 3m, which is approximately 1.95 m/s.

Explanation:

To answer this question, we first need to calculate the work done by Susan when she pulls the mat over the distance of 3.0 meters. The angle at which the rope is pulled does make a difference in this calculation. The force that is actually contributing to the work is the horizontal component of the tension, which can be determined by the equation Fh = F cos θ which equals 30N * cos30 = 25.98N.

The work done, W, is equal to this force multiplied by the displacement, so W = Fd = 25.98N * 3m = 77.94 Joules.

Next, we need to calculate the work done against friction. The force of friction is calculated as Ff = µN. Here N is the normal force, which is equal to the weight of the baby, so N = mg = 10kg * 9.8m/s² = 98N. The force of friction then is Ff = µN = 0.20 * 98N = 19.6N. The work done against friction is Wf = Ff * d = 19.6N * 3m = 58.8 Joules.

The net work done on the baby is the work done by Susan minus the work done against friction, so Wnet = W - Wf = 77.94J - 58.8J = 19.14 Joules. This net work is equal to the change in kinetic energy of the baby, ∆K, since Kinitial = 0 (Paul starts at rest), the work done is all transformed into final kinetic energy. So ∆K = 19.14J.

The kinetic energy of an object is given by the equation K = 1/2 mv², so we have 19.14J = 1/2 * 10kg * v². Solving for v gives us roughly v = 1.95 m/s. Therefore, the speed of the baby after being pulled 3 meters is approximately 1.95 m/s.

Learn more about Physics: Work and Energy here:

brainly.com/question/33726554

#SPJ12

Final answer:

To determine Paul's speed, we must calculate the net work done on him using the work-energy theorem. This includes the work done by Susan and the work done against friction. Paul’s speed after being pulled 3.0 m is approximately 1.96 m/s.

Explanation:

Solving this problem involves understanding the work-energy theorem and forces. First, let's calculate the work done. The work done by the force Susan applies (W1) is the product of the tension (T), the distance (d), and the cosine of the angle (θ). W1 = T * d * cos(θ) = 30N * 3.0m * cos(30) = 77.94J.

Next, the work done against friction (W2) is the product of the frictional force and the distance, which is µmgd. Here, µ is the coefficient of friction (0.20), m (10kg) is the mass of the baby, g (9.8m/s2) is the acceleration due to gravity, and d is the distance (3.0 m). W2 = µmgd = 0.20 * 10kg * 9.8m/s2 * 3.0m = 58.8J.

According to the work-energy theorem, the net work done on an object is equal to the change in its kinetic energy. Therefore, the final kinetic energy (and thus the final speed) of Paul will be the initial kinetic energy plus the net work done on him. His initial speed is assumed to be zero, hence the initial kinetic energy is zero. The net work done on him is W = W1 - W2= 77.94J - 58.8J = 19.14J. Setting this equal to the final kinetic energy, (1/2)mv2, allows us to solve for the final speed, v = sqrt((2 * W)/m) = sqrt((2 * 19.14J)/10kg) = 1.96 m/s approximately.

Learn more about the Work-Energy Theorem here:

brainly.com/question/30560150

#SPJ11

A current-carrying wire is bent into a circular loop of radius R and lies in an xy plane. A uniform external magnetic field B in the +z direction exists throughout the plane of the loop. The current has the magnitude of I and it is deirected counterclockwise when observing from positive z axis.What is the magnetic force exerted by the external field on the loop?Express your answer in terms of some or all of the variables I, R, and B

Answers

Final answer:

The net magnetic force exerted by the external magnetic field on a current-carrying wire formed into a loop in a uniform magnetic field is absolutely zero since the individual forces on each section of the loop cancel each other out.

Explanation:

The force exerted by a magnetic field on a current carrying wire is given by Lorentz force law, which says that the force is equal to the cross product of the current and the magnetic field. However, in this case, where the wire is formed into a loop with current flowing in a counter-clockwise direction in presence of an external magnetic field, the individual forces on each infinitesimal section of the loop cancel each other out. Therefore, the net magnetic force exerted by the external field on the entire loop is zero.

Learn more about Magnetic Force here:

brainly.com/question/10353944

#SPJ12

Final answer:

The magnetic force exerted on a current-carrying wire loop by an external magnetic field can be calculated using the equation F = I * R * B.

Explanation:

The magnetic force exerted by the external field on the current-carrying wire loop can be determined using the equation F = I * R * B. The magnetic force is equal to the product of the current, radius, and magnetic field strength. The direction of the magnetic force can be determined using the right-hand rule, where the thumb represents the direction of the current, the fingers represent the magnetic field, and the palm represents the direction of the force.

Learn more about Magnetic force on wire loop here:

brainly.com/question/31234642

#SPJ12

A projectile is launched at some angle to the horizontal with some initial speed vi, and air resistance is negligible.(a) Is the projectile a freely falling body?Yes or No(b) What is its acceleration in the vertical direction? (Let up be the positive direction.)____? m/s2(c) What is its acceleration in the horizontal direction?

Answers

Answer:

A) No

B)-9,81 m/s^2

C)0 m/s^2

Explanation:

A free fallin object has only velocity on the vertical axis so any object that is moving in the Y and X axis has projetile motion not free falling, and when dealing with projectile motion the object is experiencing acceleration towards the ground of -9,81m/s^2 and in the Y axis, in the X axis there´s is only acceleration if the air is providing resistance, since it states that it isnot, then the accleration is 0.

An object is projected with speed of 4ms at an angle of 60° to horizontal. Calculate the time of flight of the object. (g=10ms2)​

Answers

Given :

∅ = 60⁰

u = 4 m/s

g = 10m/s²

to find :

T = ?

Solution :

as per formula,

t =  (2u \: sin \theta)/(g)

now put the value : t \:  =  (2 * 4 * sin \: 60)/(10)

as we know sin60 \:  = ( √(3) )/(2)

therefore,

t \:  =  (8 *   ( √(3) )/(2)  )/(10)

as we solve this we get,

t \:  =  ( 2√(3) )/(5)

that's t = 0.69 sec

\sf\fbox\red{\:I \:hope \:it's \:helpful \:to \:you}

0.8 seconds

Explanation:

time of flight = 2u/g

u=4m/s

g=10

= 8/10

= 0.8 sec

just a trial...not sure!!!

In a charging process, 4 × 1013 electrons are removed from one small metal sphere and placed on a second identical sphere. Initially, both metal spheres were neutral. After the charging process, the electrical potential energy associated with the two spheres is found to be −0.063 J. What is the distance between the two spheres?

Answers

Answer:

The distance between the two spheres is 914.41 X 10³ m

Explanation:

Given;

4 X 10¹³ electrons, and its equivalent in coulomb's is calculated as follows;

1 e = 1.602 X 10⁻¹⁹ C

4 X 10¹³ e = 4 X 10¹³ X 1.602 X 10⁻¹⁹ C = 6.408 X 10⁻⁶ C

V = Ed

where;

V is the electrical potential energy between two spheres, J

E is the electric field potential between the two spheres N/C

d is the distance between two charged bodies, m

V = (K*q)/(d^2)*d = (K*q)/(d)

d = (K*q)/(V)

where;

K is coulomb's constant = 8.99 X 10⁹ Nm²/C²

d = (8.99 X 10⁹ X 6.408 X 10⁻⁶)/0.063

d = 914.41 X 10³ m

Therefore, the distance between the two spheres is 914.41 X 10³ m