Answer:
Option C is the correct answer.
Explanation:
Heat required to melt solid in to liquid is calculated using the formula
H = mL, where m is the mass and L is the latent heat of fusion.
Latent heat of fusion for water = 333.55 J/g
Mass of ice = 0.3 kg = 300 g
Heat required to convert 0.3 kilogram of ice at 0°C to water at the same temperature
H = mL = 300 x 333.55 = 100,375 J
Option C is the correct answer.
Answer:
Breaths per minute is a frequency. The period is its reciprocal.
Explanation:
In simple harmonic motion, a period (T) is the time taken for one point to start in a position and reach that position again, in other words to complete a cycle or lapse. In this case, a period is the time one takes from starting to inspire the air to releasing all of it from the lungs.
In simple harmonic motion, the frequency (f) is how many times a point completes a cycle or lapse in one unity of time (could be one second, one minute, one hour, etc). In this case, the frequency is how many times one breathes in one minute. This is the breathing rate, since it is breathings per minute. Breaths per minute is a frequency.
Period (T) and frequency (f) relate to each other in the following formulae: or .
Therefore, breaths per minute is a frequency, and since it is related to the period, we say the period is reciprocal to it.
A. sideways
B. up and down
C. back and forth
D. all of the above
Answer: D i am pretty sure
Explanation:
Answer:
all
Explanation:
Answer:
Explanation:
solution below
The quantum of energy for one atomic oscillator in tungsten, given the effective interatomic spring stiffness of 360 N/m, the mass of one tungsten atom as 3.074 x 10^-25 kg, and the reduced Planck's constant of 1.0546 x 10^-34 J · s, can be calculated to be approximately 1.33 x 10^-21 J.
To calculate the quantum of energy for one atomic oscillator in tungsten, we will consider the model of an atom being connected to two springs, both having an effective interatomic spring stiffness of four times the given value (90 N/m). This value thus becomes 360 N/m.
One mole of tungsten has a mass of 0.185 kg, thus the mass of one atom can be determined by dividing this value by Avogadro's number (6.0221 x 10^23 molecules/mole), which gives approximately 3.074 x 10^-25 kg.
The quantum of energy, or the energy of one quantum (the smallest possible energy increment), is given by the formula E = ħω, where ħ is the reduced Planck's constant (1.0546 x 10^-34 J · s) and ω is the angular frequency, given by sqrt(k/m), where k is the spring constant and m is the mass.
Substituting the known values into these equations gives ω= sqrt((360)/(3.074 x 10^-25)) and E= (1.0546 x 10^-34) x sqrt((360)/(3.074 x 10^-25)), which results in a quantum of energy of approximately 1.33 x 10^-21 J.
#SPJ3
The gravitational force minus any contact forces acting on an object
The difference between the normal force and the gravitational force acting on an object
The sum of all the forces acting on an object in the same direction
The sum of all forces acting on an object in the same direction is described for the net force acting on an object.
Example : If two forces (2 kids pushing in the same direction to move the object big box) act on an object (big box) in the same direction, then the net force is equal to the sum of the two forces. If the kids pushed in the opposite direction, the net force will not occur.
Hence, Option D is the correct answer.
Learn more about Net force,
#SPJ6
Answer:
The sum of all the forces acting on an object in the same direction.
Answer:
s = 6.25 10⁻²² m
Explanation:
Polarizability is the separation of electric charges in a structure, in the case of the atom it is the result of the separation of positive charges in the nucleus and the electrons in their orbits, macroscopically it is approximated by
p = q s
s = p / q
let's calculate
s = 1 10⁻⁴⁰ / 1.6 10⁻¹⁹
s = 0.625 10⁻²¹ m
s = 6.25 10⁻²² m
We see that the result is much smaller than the size of the atom, therefore this simplistic model cannot be taken to an atomic scale.
Answer:
Flow stress= 9390Psi
Average flow stress= 4173.33Psi
Explanation:
Given:
Strength Coefficient = 75000psi
Strain hardening Exponent = 0.25
Gauge length = 2inches
Stretch length = 3.3 inches
Flow stress,Yf = 75000 × ln(3.3/2) × 0.25
Yf = 75000× ln(1.65) × 0.25
Yf = 75000× 0.5008 × 0.25
Flow stress = 9390Psi
Average flow stress = 75000× 0.5008 × (0.25/2.25)
Average flow stress= 4173.33psi