Ken Griffey, Jr's warehouse shot in the 1933 home run derby travelled 93 feet per second for 5 seconds. How far did he hit the ball?

Answers

Answer 1
Answer:

Answer:

465 feet because 93*5 = 465, btw that was 1993 not 1933

Explanation:


Related Questions

A truck’s suspension spring each have a spring constant of 769 N/m. If the potential energy of the right front spring is 250 J, how far is the spring compressed?
A 1,200 kg car travels at 20 m/s. what is it’s momentum ?
Which of the following organisms has an adaptation that will allow it to survive in tundra biome? *A.)Plants with roots that are short and grows sideways with hairy stems and small leaves.B.)Plants that have broad leaves to capture sunlight and long roots to penetrate the soil.C.)Animals with thin fur that allows them to get rid of heat efficiently.D.)Animals with long tongues for capturing prey and sticky pads for climbing trees.
Impulse is the______of the force and time of contact
Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass m, and the surface of the bridge is a height h above the water. The bungee cord, which has length L when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant k. Kate doesn't actually jump but simply steps off the edge of the bridge and falls straight downward. Kate's height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use g for the magnitude of the acceleration due to gravity.

As in problem 80, an 76-kg man plans to tow a 128000-kg airplane along a runway by pulling horizontally on a cable attached to it. Suppose that he instead attempts the feat by pulling the cable at an angle of 6.7° above the horizontal. The coefficient of static friction between his shoes and the runway is 0.87. What is the greatest acceleration the man can give the airplane? Assume that the airplane is on wheels that turn without any frictional resistance.

Answers

In order to solve this problem it is necessary to apply the concepts related to Newton's second law and the respective representation of the Forces in their vector components.

The horizontal component of this force is given as

F_x = Fcos(6.7)

While the vertical component of this force would be

F_y = Fsin(6.7)

In the vertical component, the sum of Force indicates that:

\sum F_y= 0

The Normal Force would therefore be equivalent to the weight and vertical component of the applied force, therefore:

N = mg+Fsin(6.7)

In the horizontal component we have that the Force of tension in its horizontal component is equivalent to the Force of friction:

\sum F_x = 0

F_x = F_(friction)

Fcos (6.7) = N\mu

Using the previously found expression of the Normal Force and replacing it we have to,

Fcos(6.7)= \mu (mg+Fsin(6.7))

Replacing,

Fcos(6.7)= (0.87) (mg+Fsin(6.7))

Fcos(6.7) = (0.87)(mg) + (0.87)(Fsin(6.7))

Fcos(6.7) -(0.87)(Fsin(6.7)) = 0.87 (mg)

F(cos(6.7)-0.87sin(6.7)) = 0.87 (mg)

F = (0.87 (mg))/((cos(6.7)-0.87sin(6.7)))

F = (0.87(128000*9.8))/((cos(6.7)-0.87sin(6.7)))

F = 1.95*10^6N

Finally the acceleration would be by Newton's second law:

F = ma

a = (F)/(m)

a = ( 1.95*10^6)/(128000)

a = 15.234m/s^2

Therefore the greatest acceleration the man can give the airplane is 15.234m/s^2

A 1850 kg car traveling at 13.8 m/s collides with a 3100 kg car that is initally at rest at a stoplight. The cars stick together and move 1.91 m before friction causes them to stop. Determine the coefficient of kinetic friction between the cars and the road, assuming that the negative acceleration is constant and all wheels on both cars lock at the time of impact.

Answers

To solve this problem, it is necessary to apply the concepts related to the conservation of momentum, the kinematic equations for the description of linear motion and the definition of friction force since Newton's second law.

The conservation of momentum can be expressed mathematically as

m_1v_1+m_2v_2 = (m_1+m_2)v_f

Where,

m_(1,2)= Mass of each object

v_(1,2) = Initial Velocity of each object

v_f= Final velocity

Replacing we have that,

m_1v_1+m_2v_2 = (m_1+m_2)v_f

1850*13.8+3100*0 = (1850+3100)v_f

v_f = 5.1575m/s

With the final speed obtained we can determine the acceleration through the linear motion kinematic equations, that is to say

v_f^2-v_i^2 = 2ax

Since there is no initial speed, then

v_f^2 = 2ax

5.1575^2 = 2a (1.91)

a = 6.9633m/s^2

Finally with the acceleration found it is possible to find the friction force from the balance of Forces, like this:

F_f = F_a \n\mu N = m*a \n\mu = (ma)/(N)\n\mu = (ma)/(mg)\n\mu = (a)/(g)\n\mu = (6.9633)/(9.8)\n\mu = 0.7105

Therefore the Kinetic friction coefficient is 0.7105

Four students measured the same line with a ruler like the one shown below. The results were as follows: 5.52 cm, 6.63 cm, 5.5, and 5.93. Even though you cannot see the line they actually measured, which of the recorded measurements are possible valid measurements for this instrument, according to its precision? Select all that apply. 1. 5.52 2. 6.63 3. 5.5 4. 5.93

Answers

Answer:

correct answer is 1 and 3

Explanation:

In direct measurement with an instrument, the precision or absolute error of the instrument is given by its appreciation, in this case we see that the measurements have two decimal places, so the appreciation of the instrument must be 0.01 cm

Based on this appreciation, the valid measurements are 5.52 and 5.5.

the other two measurements have errors much higher than the assessment of the instrument, for which there must have been some errors in the measurement.

The correct answer is 1 and 3

A traffic light weighing 200N hangs from a vertical cable tied to two other cables that are fastened to to a support ,as shown . The upper cables make angles 41° and 63° with the horizontal . Calculate the tension in of the three cables

Answers

Answer:

  • 93.6 N in the 41° cable
  • 155.6 N in the 63° cable
  • 200 N in the vertical cable

Explanation:

Let T and U represent the tensions in the 41° and 63° cables, respectively. In order for the system to be stationary, the horizontal components of these tensions must balance, and the vertical components of these tensions must total 200 N.

  Tcos(41°) =Ucos(63°) . . . . . balance of horizontal components

  U = Tcos(41°)/cos(63°) . . . . write an expression for U

__

The vertical components must total 200 N, so we have ....

  Tsin(41°) +Usin(63°) = 200

  Tsin(41°) +Tcos(41°)sin(63°)/cos(63°) = 200

  T(sin(41°)cos(63°) +cos(41°)sin(63°))/cos(63°) = 200

  T = 200cos(63°)/sin(41° +63°) ≈ 93.6 . . . newtons

  U = 200cos(41°)/sin(41° +63°) ≈ 155.6 . . . newtons

__

The vertical cable must have sufficient tension to balance the weight of the traffic light, so its tension is 200 N.

Then the tensions in the 3 cables are ...

  41°: 93.6 N

  63°: 155.6 N

  90°: 200 N

The tension in each of the three cables are 94.29, 155.56 and 200 Newton respectively.

Given the following data:

  • Force = 200 Newton.
  • Angle 1 = 41°
  • Angle 2 = 63°

How to calculate the tension.

First of all, we would determine the third tension force based on the vertical component as follows:

\sum F_y = 0\n\nT_3 - F_g =0\n\nT_3 - F_g=200\;N

Next, we would apply Lami's theorem to resolve the forces acting on the traffic light at equilibrium:

For the horizontal component:

\sum F_x = -T_1cos41+T_2cos 63=0\n\n0.7547T_1=0.4540T_2\n\nT_1=(0.4540T_2)/(0.7547)\n\nT_1 = 0.6016T_2   ....equation 1.

For the vertical component:

\sum F_y = T_1sin41+T_2sin 63-T_3=0\n\n\sum F_y = T_1sin41+T_2sin 63-200=0\n\n0.6561T_1+0.8910T_2 =200   ...equation 2.

Substituting eqn. 1 into eqn. 2, we have:

0.6561 * (0.6016T_2)+0.8910T_2 =200\n\n0.3947T_2+0.8910T_2 =200\n\n1.2857T_2 =200\n\nT_2 = (200)/(1.2857) \n\nT_2 = 155.56\;Newton

For the first tension:

T_1 = 0.6061T_2\n\nT_1 = 0.6061 * 155.56\n\nT_1 = 94.29\;Newton

Read more on tension here: brainly.com/question/4080400

We can calculate the force that the atmospheric pressure produces on a surface. Consider a living room that has a 4.0m×5.0m floor and a ceiling 3.0m high. What is the total force on the floor due to the air above the surface if the air pressure is 1.00 atm?

Answers

Answer:

Force, F=2.02* 10^6\ N

Explanation:

It is given that,

Length of the room, l = 4 m

breadth of the room, b = 5 m

Height of the room, h = 3 m

Atmospheric pressure, P=1\ atm=101325\ Pa

We know that the force acting per unit area is called pressure exerted. Its formula is given by :

P=(F)/(A)

F=P* l* b

F=101325* 4* 5

F=2.02* 10^6\ N

So, the total force on the floor due to the air above the surface is 2.02* 10^6\ N. Hence, this is the required solution.

Name the four forces in physics?​

Answers

Answer:

Gravitational

Electrostatic

magnetic

Frictional

gravitational

electrostatic

magnetic

frictional

hope it helps

pls mark as brainliest