Answer:
No, the apple will reach 4.20041 m below the tree house.
Explanation:
t = Time taken
u = Initial velocity = 2.8 m/s
v = Final velocity = 0
s = Displacement
g = Acceleration due to gravity = -9.81 m/s² = a (negative as it is going up)
Equation of motion
The height to which the apple above the point of release will reach is 0.39959 m
From the ground the distance will be 1.3+0.39959 = 1.69959 m
Distance from the tree house = 5.9-1.69959 = 4.20041 m
No, the apple will reach 4.20041 m below the tree house.
The values in the option do not reflect the answer.
The apple will not reach the friend in the tree house as it will only reach a height of approximately 1.527 m.
To determine whether the apple will reach a friend in a tree house 5.9 m above the ground, we can use the equations of motion. Since the apple is thrown vertically upward, it will experience a negative acceleration due to gravity. Using the equation h = vo*t + (1/2)*a*t^2, where h is the final height, vo is the initial velocity, a is the acceleration, and t is the time, we can calculate the time it takes for the apple to reach a height of 5.9 m. Plugging in the values, we get:
5.9 = 2.8*t + (1/2)*(-9.81)*t^2
Simplifying the equation, we have:
-4.905*t^2 + 2.8*t - 5.9 = 0
Using the quadratic formula, we can solve for t. The quadratic formula is t = (-b ± sqrt(b^2 - 4ac)) / (2a), where a = -4.905, b = 2.8, and c = -5.9.
Plugging in the values, we get:
t = (-2.8 ± sqrt(2.8^2 - 4*(-4.905)*(-5.9))) / (2*(-4.905))
After evaluating the formula, we find that the apple will take approximately 1.527 seconds to reach a height of 5.9 m. Since the apple continues to rise after reaching this height, it will not reach the friend in the tree house.
Answer:
70.15 Joule
Explanation:
mass of man, m = 70 kg
intial length, l = 11 m
extension, Δl = 1.5 m
Let K is the spring constant.
In the equilibrium position
mg = K l
70 x 9.8 = K x 11
K = 62.36 N/m
Potential energy stored, U = 0.5 x K x Δl²
U = 0.5 x 62.36 x 1.5 x 1.5
U = 70.15 Joule
Both students do the same amount of work, but Ben delivers more power due to completing the work in a shorter time.
In this case, both Ben and Bonnie are lifting the same 50 kg barbell over their heads, but they are doing it at different rates. Bonnie lifts the barbell 10 times in one minute, which means she is doing the work over a longer period of time. Ben, on the other hand, lifts the barbell 10 times in 10 seconds, doing the work in a shorter amount of time.
The amount of work done is equal to the force exerted multiplied by the distance moved. Since the mass and distance are the same for both students, the work done is equal. However, power is defined as the rate at which work is done, which is calculated by dividing the work done by the time taken to do it. Since Ben completes the work in a shorter period of time, he delivers more power than Bonnie.
Therefore, Ben does the most work and delivers the most power.
#SPJ2
Answer:
Both of them
Explanation:
Answer: The answer is A.
Explanation:
Suppose you are in an elevator. As the elevator starts upward, its speed will increase. During this time when the elevator is moving upward with increasing speed, your weight will be greater than your normal weight at rest.