A distance of d is covered with 53 mile/hr initially.Time taken to cover this distance t1 = d/53 hourNext distance of d is covered with x mile hours.Time taken to cover this distance t2 = d/x hours.We have average speed = 26.5 mile / hour
= Total distance traveled/ total time taken
=
☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️✌️✌️✌️✌️✌️✌️✌️✌️❤️❤️❤️
To determine the tension in the string that connects M2 and M3, we can follow these steps:
Step 1: Identify the necessary variables. Given data (for example) could be:
- Mass of M2, which is 5 kg
- Mass of M3, which is 10 kg
- The acceleration due to gravity, which is approximately 9.8 m/s²
- The angle at which the string pulls on M2, which is 30 degrees
- Assume the system is in equilibrium, meaning there is no net acceleration, so the acceleration is 0 m/s²
Step 2: Calculate the weight of M3, which is its mass times the acceleration due to gravity. This is because weight is the force exerted by gravity on an object, which equals the object's mass times the acceleration due to gravity.
For M3, this calculation would be M3 * g = 10 kg * 9.8 m/s² = 98 N (Newtons).
Step 3: Determine the force exerted by M2 that acts along the line of the string. This won't be the full weight of M2, because the string pulls at an angle. This component of the force can be calculated using the sine of the angle, because sine gives us the ratio of the side opposite the angle (here, the force along the string) to the hypotenuse (here, the full weight of M2) in a right triangle.
The horizontal component of the force of M2 is then M2 * g * sin(30deg) = 5 kg * 9.8 m/s² * sin(30deg) = 24.5 N.
Step 4: The tension in the string is the force M3 exerts on it, which is its weight, minus the component of M2's weight that acts along the string. This is because M2 and M3 are pulling in opposite directions, so they subtract from each other.
The tension in the string is then the weight of M3, 98 N, minus the horizontal (along the string) component of M2's weight, 24.5 N.
So, the tension in the string is 98 N - 24.5 N = 73.5 N.
This is the force that the string needs to exert in order to keep M2 and M3 connected and in equilibrium.
Learn more about Tension in a string here:
#SPJ12
We are given:
The tuning fork vibrates at 15660 oscillations per minute
Period of one back-and forth movement:
the given data can be rewritten as:
1 minute / 15660 oscillations
60 seconds / 15660 oscillations (1 minute = 60 seconds)
dividing the values
0.0038 seconds / Oscillation
Therefore, one back and forth vibration takes 0.0038 seconds
Answer:
51 mph
Explanation:
Statements that are right as regards oscillation are:
A. The decrease in the amplitude of an oscillation caused by dissipative forces is called damping.
B. The increase in amplitude of an oscillation by a driving force is called forced oscillation.
C. In a mechanical system, the amplitude of an oscillation diminishes with time unless the lost mechanical energy is replaced.
D. An oscillation that is maintained by a driving force is called forced oscillation.
Therefore, the options are correct.
Learn more at:
Answer:
right A, B, C, D
Explanation:
They ask which statements are true
A) Right. The decrease in amplitude is due to the dissipation of energy by friction and is called damping
B) Right. In resonant processes the amplitude of the oscillation increases, being a forced oscillation
C) Right. In a system with energy loss, the amplitude must decrease, therefore energy must be supplied to compensate for the loss.
D) Right. It is a resonant process the driving force keeps the oscillation of the system
Answer:
b
Explanation: