Nuclear fusion takes place inthe sun, letter A. The sun is a ball of hot gases. Initially, it containshydrogen and helium. When they fuse together, it forms carbon. After carbon,nitrogen, oxygen silicon follows until it forms a massive hot ball of gases. Thenet result is the fusion of four protons into one alpha particle with therelease of two positrons, two neutrons and energy.
(a) At any point between the cylinders a distance r from the axis and
(b) At any point outside the outer cylinder.
(c) Graph the magnitude of the electric field as a function of the distance r from the axis of the cable, from r = 0 to r = 2c.
(d) Find the charge per unit length on the inner surface and on the outer surface of the outer cylinder.
Answer:
Part a)
Part b)
Part d)
As we know that due to induction of charge there will be same charge appear on the inner and outer surface of the cylinder but the sign of the charge must be different
On the inner side of the cylinder there will be negative charge induce on the inner surface and on the outer surface of the cylinder there will be same magnitude charge with positive sign.
Explanation:
Part a)
By Guass law we know that
Part b)
Outside the outer cylinder we will again use Guass law
Part d)
As we know that due to induction of charge there will be same charge appear on the inner and outer surface of the cylinder but the sign of the charge must be different
On the inner side of the cylinder there will be negative charge induce on the inner surface and on the outer surface of the cylinder there will be same magnitude charge with positive sign.
The electric field between the cylinders is given by E = λ / (2πε₀r). The electric field outside the outer cylinder is zero due to the absence of net charge. Graph the electric field magnitude using the equation E = λ / (2πε₀r). The inner surface charge of the outer cylinder is -λ and the outer surface charge is 0.
To calculate the electric field between the cylinders at a distance r from the axis, you can use Gauss's Law. Since the charging is uniform, the electric field will also be uniform. Therefore, the electric field at any point between the cylinders is given by E = λ / (2πε₀r), where ε₀ is the permittivity of free space.
To calculate the electric field at any point outside the outer cylinder, you can use the principle of superposition. The electric field due to the outer cylinder is zero because it has no net charge. The electric field due to the inner cylinder can be calculated using the same formula as before.
To graph the magnitude of the electric field as a function of the distance r from the axis, you can plot the equation E = λ / (2πε₀r) for values of r ranging from 0 to 2c.
The charge per unit length on the inner surface of the outer cylinder is -λ, while the charge per unit length on the outer surface of the outer cylinder is 0. This is because the outer cylinder has no net charge and the inner cylinder has a uniform positive charge per unit length λ.
#SPJ11
Answer:
water pushes against the squid
Gravitational field exists in the space surrounding a charged particle and exerts a force on other charged particles. Gravitational waves are ripples of waves travelling outward from the source. The more massive the orbit of two bodies, the more it emits gravitational wave. And everything around it that is near within the wave experiences a ‘pull’ toward the orbiting bodies.
Answer:
^
|
|
Nope,(not expert certified)
Electrical Field is the correct answer.
Explanation:
b. The larger one accelerates at 3.33 m/s2, while the smaller one accelerates at 100 m/s2.
c. The larger one accelerates at 100 m/s2, while the smaller one accelerates at 3.33 m/s2.
d. The ...
Answer:
B) The larger one accelerates at 3.33 m/s² while the smaller one accelerates at 100 m/s².
Explanation:
Parameters given:
Mass of larger asteroid = 3000 kg
Mass of smaller asteroid = 100 kg
Force of collision = 10000 N
Since both of them experience the collision force, we can find how that force causes them to accelerate by using the formula of force:
F = m*a
=> a = F/m
For the larger one,
a = 10000/3000 = 3.33 m/s²
For the smaller one,
a = 10000/100 = 100 m/s²