In both scenarios, the work done on the heavy block is the same, as it is determined by the change in the vertical height. However, pulling the block up the inclined plane may require less force because the work is distributed over a larger distance.
The subject of this question is based on the concept of work and energy in physics. When you pull the heavy block straight upwards (scenario a), the work done is equal to the force times the distance, or Work = mg*h, where m is the mass of the block, g is the acceleration due to gravity, and h is the height it needs to rise. For pulling the block up the inclined plane (scenario b), the work done still equals mg*h as the vertical distance it rises is the same.
This is because, according to the principle of work and energy, the work done on an object is equal to the change in its kinetic energy. Since the speed of the block remains constant in both scenarios, the kinetic energy does not change, meaning the work done on the block is the same in both scenarios.
However, pulling the block up the inclined plane may require less force because of the larger distance over which the work is done. But the overall work is the same in both cases.
#SPJ12
Answer:
The torque on the coil is
Solution:
No. of turns per meter length, n = 1400 turns\m
Current, I = 4.9 A
Angle,
No. of turns of coil, N = 42 turns
Area, A =
Current in the coil, I' = 0.45 A
Now,
To calculate the exerted torque on the coil:
The magnetic field, B produced inside the coil is given by:
Now, the torque exerted is given by:
Answer:
Explanation:
Given:
A long solenoid having
no. of turns per meter, n =1400
current, I = 4.9 A
A small coil of wire placed inside the solenoid
angle of orientation with respect to the axis of the solenoid, °
no. of turns in the coil, N = 42
area of the coil,
current in the coil,
We have for torque:
.......................(1)
∵................................(2)
where:
B= magnetic field
The permeability of free space =
Substitute B from eq. (2) into eq. (1) we have:
putting the respective values in above eq.
at the bottom of each page
at the end
in the appendix
Answer:
at the end of the page
Explanation:
leave a rating for my dying soul please. :)
Answer:
at the end
Explanation:
Explanation:
Newton's First Law ,
F = ma
a = m/F
a = 68 / 59
a = 1.15 m/s2
Answer:
the more particles packed together the faster it falls
Explanation:
the mass + the 1 constant g-force = the speed without adding air resistance