B. A 250-N force moves an object 1 m.
C. A 25-N force moves an object 8 m.
D. A 600-N force is applied to an object and moves it 0 m.
the spring will be compressed by 0.3072 m
Explanation:
acceleration of elevator=3 m/s²
mass of student= 60 Kg
spring constant=2.5 x 10³ N/m
the force on the student is given by F = m ( g +a)
F=60 (9.8+3)
F=768 N
now the formula for spring force is given by
F= k x
768= 2.5 x 10³ (x)
x=0.3072 m
The spring on which a 60kg student is standing in an elevator accelerating at 3.0 m/s² is compressed by approximately 30.72 cm. This is calculated using Hooke's Law, considering both the weight of the student and the additional force due to the elevator's acceleration.
The situation you've described involves Hooke's Law, which states that the force needed to extend or compress a spring by some distance is proportional to that distance. In this case, we can consider the student's weight plus the extra force from the acceleration of the elevator.
To determine the compression of the spring, we use the equation F = kx, where F is the total force exerted on the spring, k is the spring constant, and x is the amount the spring is compressed. Here, the total force (F) includes the weight of the student and the force due to the elevator's acceleration. So, F = mg + ma, where m is the mass of the student, g is the gravity (9.8 m/s²), and a is the acceleration of the elevator.
Substituting the given values, we get F = (60 kg)(9.8 m/s²) + (60 kg)(3.0 m/s²) = 768 N. The compression of the spring (x) is now obtained by rearranging the Hooke's law formula to x = F/k.
This results in x = 768 N ÷ 2.5 x 10³ N/m = 0.3072 m or 30.72 cm. Thus, the spring is compressed by approximately 30.72 cm due to the combined force of the student's weight and the accelerating elevator.
#SPJ12
B: direction and distance
C: position and rate
D: distance and mass
please help which one are these . for science class
Answer:
Explanation:
D Distance and Mass
Answer:
Kepler's first law suggests that the orbit of planets is not circular but elliptical
Explanation:
The three Kepler's laws explain the motion of the planets orbiting the Sun:
- The first law tells that the orbits of the planets around the Sun are ellipses, with the Sun located at one of the two focii
- The second law tells that a line connecting the Sun with the planet sweeps out equal areas in equal amounts of time
- The third law tells that the square of the orbital periods of the planets is proportional to the cube of their average distance from the Sun
As we can read, the first law tells us that the orbit of the planets is not circular, but elliptical.