meters away?
Answer:
60m/s
Explanation:
v=s÷t
75m÷1.25s=60m/s
Answer
60
Explanation:
This is because if the question gives you the distance and the time, you have to find the speed.
As it is given that 2 kg mass is suspended by 12 cm long thread and then a horizontal force is applied on it so that it remains in equilibrium at 30 degree angle
So here we can use force balance in X and Y directions
now for X direction or horizontal direction we can use
for vertical direction similarly we can say
so here we first divide the two equations
now plug in all values in the above equation
Part b)
now in order to find the tension in the thread we can use any above equation
so tension in the thread will be 22.6 N
To find the planet's radius in terms of the radius Rg of Earth, use the equation g = GM/R^2 and substitute 2g for g. Solve for R to get R = sqrt(1/(2gMg)) * Rg.
To find the planet's radius in terms of the radius Rg of Earth, we need to understand the relationship between the gravitational field and the mass and radius of a planet. The magnitude of the gravitational field on the surface of a planet is given by g = GM/R2, where G is the gravitational constant, M is the mass of the planet, and R is its radius. For the planet in question, we are told that the magnitude of the gravitational field is 2g and its mass is half the mass of Earth. Since the gravitational field is 2g, we can substitute g with 2g in the equation and solve for R in terms of Rg:
2g = GM/R2 → 2gR2 = GM → 2gR2 = (GMg)/(2Rg) → R2/Rg = 1/(2gMg) → R = sqrt(1/(2gMg)) * Rg
#SPJ12
To find the radius of a planet with a gravitational field twice that of Earth's and half the mass, the radius is calculated to be half of Earth's radius.
The magnitude of the gravitational field strength g on a planet is given by the equation g = G(M/R^2), where G is the universal gravitation constant, M is the planet's mass, and R is the planet's radius. Given that the gravitational field on the surface of the particular planet is 2g where g is Earth's gravitational field, and the planet's mass is half of Earth's mass, we can derive the planet's radius in terms of Earth's radius Rg. Setting up the proportion (G(1/2M_Earth)/(R^2)) / (G(M_Earth)/(Rg^2)) = 2, and simplifying, we find that R^2 = (1/4)Rg^2. Taking the square root of both sides gives us the final relation R = (1/2)Rg.
#SPJ3