velocity with respect to the ground?
Answer:
190 km/h
Explanation:
randomly picked it
To find the plane's velocity with respect to the ground, we need to consider the combination of the plane's airspeed and the wind's speed and direction. The resulting velocity is 180 km/h north, 60 km/h west.
To find the plane's velocity with respect to the ground, we need to consider the combination of the plane's airspeed and the wind's speed and direction. Since the plane is heading due north and the wind is blowing from the west, we can use vector addition to find the resulting velocity.
First, we break down the airspeed into its north and east components. The north component is 180 km/h, and the east component is 0 km/h because the plane is not moving in that direction.
Next, we break down the wind's velocity into its north and east components. The north component is 0 km/h because the wind is blowing from the west, and the east component is -60 km/h because the wind is against the plane's motion.
Finally, we add the north components together and the east components together. The resulting velocity is 180 km/h north, 60 km/h west. This is the plane's velocity with respect to the ground.
#SPJ3
b. Fluorescence
c. Phosphorescence
d. Oil lamps
Penn Foster STudents: Oil Lamps
When a wave transfers from one medium to another with different properties, the speed of the wave can change. In this case, we know that the wavelength changes when the wave transfers from the first type of rope to the second type of rope. If the wavelength becomes one-fourth of what it was before the transfer, this means that the second type of rope has a higher wave speed than the first type of rope.
The wave speed is defined as the product of the wavelength and the frequency of the wave. Since the frequency of the wave remains constant as it transfers from one medium to another, a decrease in wavelength means an increase in wave speed. This can be seen from the wave equation, c = λf, where c is the wave speed, λ is the wavelength, and f is the frequency.
Therefore, if the wavelength becomes one-fourth of what it was before the transfer, this means that the wave speed in the second type of rope is four times the wave speed in the first type of rope. In other words, the speed of the wave becomes quadruple its original speed after the transfer.
To know more about quadruple click this link-
#SPJ11