45°
90°
180°
50°
I'll report you if you don't actually help. I'd like an actual explanation, please.
Hey
So first we need to know what the direction of the force is, using your right hand rule point your right hand in the direction of the velocity. You're saying its the z direction, not telling me whether it's into the page or out? Since its a positive z im assuming its coming out. The magnetic field is pushing it upwards, so the force is going in the negative x direction.
The force of a magnetic field is
F = Qv X B
What's weird is that you don't need mass in this equation. Actually you don't even need the formula, its telling you that they're all going in perpendicar directions. the answer is 90 degrees.
Now if you want to know the F just multiply the charge, velocity and magnetic field .
F = GVB
F = 6.048 E -15
Answer : 90 degrees, sin(90) = 1
To find the magnitude and direction of the magnetic force on a proton moving in a magnetic field, you can use the equation F = qvBsinθ, where F is the force, q is the charge, v is the velocity, B is the magnetic field, and θ is the angle between the velocity and the magnetic field. The magnitude of the magnetic force can be calculated using the equation, and its direction can be determined using the right-hand rule. In this case, the angle between the proton's velocity and the magnetic field is 90°.
To determine the magnitude of the magnetic force on the proton, we need to use the equation F = qvBsinθ, where F is the force, q is the charge, v is the velocity, B is the magnetic field, and θ is the angle between the velocity and the magnetic field.
Plugging in the values, we have F = (1.6 × 10-19 C)(1.8 × 105 m/s)(2.1 × 10-1 T)sinθ.
To find the angle θ, we can use the fact that the force is perpendicular to both the velocity and the magnetic field, which means that sinθ = 1.
Therefore, the magnitude of the magnetic force on the proton is F = (1.6 × 10-19 C)(1.8 × 105 m/s)(2.1 × 10-1 T) = 6.048 × 10-14 N. The direction of the magnetic force is given by the right-hand rule, which shows that the force is perpendicular to both the velocity and the magnetic field, pointing in the positive x-direction.
The angle between the proton's velocity and the magnetic field is 90°.
#SPJ3
b. carbon dioxide
c. radiation
d. water
On edge.nuity the answer is C- radiation. Hope this helps you out :)
Let's rank the atoms A (Gold), B (Copper), C (Carbon), and D (Silver) based on:
a. Mass (atomic mass or atomic weight)
b. Number of electrons
c. Number of protons
a. Mass (Atomic Mass or Atomic Weight):
1. Gold (A) has an atomic mass of approximately 196.97 atomic mass units (u).
2. Silver (D) has an atomic mass of approximately 107.87 u.
3. Copper (B) has an atomic mass of approximately 63.55 u.
4. Carbon (C) has an atomic mass of approximately 12.01 u.
Ranking by mass from most to least:
1. Gold (A) - 196.97 u
2. Silver (D) - 107.87 u
3. Copper (B) - 63.55 u
4. Carbon (C) - 12.01 u
b. Number of Electrons:
The number of electrons in an atom is equal to the number of protons, which is also the atomic number.
1. Gold (A) has an atomic number of 79, so it has 79 electrons.
2. Silver (D) has an atomic number of 47, so it has 47 electrons.
3. Copper (B) has an atomic number of 29, so it has 29 electrons.
4. Carbon (C) has an atomic number of 6, so it has 6 electrons.
Ranking by the number of electrons from most to least:
1. Gold (A) - 79 electrons
2. Silver (D) - 47 electrons
3. Copper (B) - 29 electrons
4. Carbon (C) - 6 electrons
c. Number of Protons:
The number of protons in an atom is equal to the atomic number.
1. Gold (A) has an atomic number of 79, so it has 79 protons.
2. Silver (D) has an atomic number of 47, so it has 47 protons.
3. Copper (B) has an atomic number of 29, so it has 29 protons.
4. Carbon (C) has an atomic number of 6, so it has 6 protons.
Ranking by the number of protons (which is the same as the ranking by the number of electrons):
1. Gold (A) - 79 protons
2. Silver (D) - 47 protons
3. Copper (B) - 29 protons
4. Carbon (C) - 6 protons
To rank the given atoms by mass, D. Silver has the most mass, followed by A. Gold, B. Copper, and C. Carbon. For number of electrons, B. Copper has the most, followed by A. Gold, C. Carbon, and D. Silver. For number of protons, B. Copper has the most, followed by A. Gold, D. Silver, and C. Carbon.
To rank the given atoms based on their mass, we can refer to the atomic mass or atomic weight of each element. The atomic mass of an element is the sum of the number of protons and neutrons in the nucleus. The element with the highest atomic mass will have the most mass. In this case, the ordering would be D. Silver, A. Gold, B. Copper, and C. Carbon.
To rank the atoms based on the number of electrons, we can refer to the atomic number of each element. The atomic number represents the number of protons, which is equal to the number of electrons in a neutral atom. The element with the highest atomic number will have the most electrons. In this case, the ordering would be B. Copper, A. Gold, C. Carbon, and D. Silver.
To rank the atoms based on the number of protons, we can again refer to the atomic number of each element. The atomic number represents the number of protons in the nucleus. The element with the highest atomic number will have the most protons. In this case, the ordering would be B. Copper, A. Gold, D. Silver, and C. Carbon.
#SPJ11
During a typical trip to school, your car will undergo a series of changes in its speed. If you were to inspect the speedometer readings at regular intervals, you would notice that it changes often. The speedometer of a car reveals information about the instantaneous speed of your car. It shows your speed at a particular instant in time.
The instantaneous speed of an object is not to be confused with the average speed. Average speed is a measure of the distance traveled in a given period of time; it is sometimes referred to as the distance pertime ratio. Suppose that during your trip to school, you traveled a distance of 5 miles and the trip lasted 0.2 hours (12 minutes). The average speed of your car could be determined as
On the average, your car was moving with a speed of 25 miles per hour. During your trip, there may have been times that you were stopped and other times that your speedometer was reading 50 miles per hour. Yet, on average, you were moving with a speed of 25 miles per hour.
hope this helps
The gem amethyst gets its purplish color from trace amounts of iron and aluminum within its crystal lattice structure. Amethyst is a variety of quartz, which is a silicon dioxide mineral. The coloration occurs due to the presence of impurities or color centers that interact with light, absorbing certain wavelengths and transmitting others.
In the case of amethyst, the purple color is primarily attributed to the presence of iron impurities (Fe3+) within the crystal lattice of quartz. The iron impurities absorb certain wavelengths of light in the visible spectrum, particularly in the green and yellow regions, leaving behind the purplish hues to be transmitted to our eyes.
The exact shade of purple can vary in amethyst gemstones, ranging from light lilac to deep violet, depending on the concentration of iron impurities and other factors during their formation. Heat treatment or exposure to radiation can also influence the color of amethyst, but the natural variety gets its beauty from the fascinating interplay of these impurities within the crystal structure.