Answer: 1.38 m/s to the right.
Explanation: We can solve this problem using the principle of conservation of momentum. The momentum of an object is defined as the product of its mass and velocity, and the total momentum of a closed system is conserved, meaning that the total momentum before a collision is equal to the total momentum after the collision.Let the initial velocity of the dart be v, and let the final velocity of the dart and the block be vf. The momentum of the dart before the collision is given by p = mv, where m is the mass of the dart. The momentum of the dart and block after the collision is given by (m + M)vf, where M is the mass of the block.Using the principle of conservation of momentum, we have:p = (m + M)vfSubstituting the given values, we get:0.012 kg v = (0.012 kg + 0.2 kg) 0.78 m/sSimplifying, we get:v = (0.212 kg) (0.78 m/s) / 0.012 kgv ≈ 1.38 m/sTherefore, the velocity of the dart just before it hits the block is approximately 1.38 m/s to the right.
Answer and explanation;
-The diagram at the left represents the Sun (or any other one-solar-mass star) as a hydrogen-burning main-sequence star, with spectral type G and one solar luminosity. The next diagram shows the Sun after it has exhausted its core hydrogen and left the main sequence, making it a sub-giant with energy generated by hydrogen burning in a shell around an inert helium core.
-The third diagram shows the Sun a little later; its energy source is still hydrogen shell burning, but at this point it has expanded in size so much that it is a red giant. The final diagram (far right) shows the white dwarf corpse of a one-solar-mass star; it is hot because it is the exposed core of the dead star, but dim because it is small in size.
Answer:
If sound waves of the same energy were passed through a block of wood and a block of steel, which is more dense than the wood, the molecules of the steel would vibrate at a slower rate. Sound moves faster through denser air because the molecules are closer together in dense air and sound can be more easily passed on.
Explanation: