a. They are unbalanced
b. They involve more than one object
c. They cause objects to move
d. They cancel each other out
The accurate answer to the question on forces is that they involve the interaction between at least two objects. This is basic to Newton's Third Law of Physics stating that for every action, there is an equal and opposite reaction. Correct option is b.
The correct answer to this forces quiz question is b. They involve more than one object. Physics, specifically Newton's Third Law, states that for every action, there is an equal and opposite reaction. This law implies that a force involves the interaction between at least two objects. The other potential answers are incorrect as forces can be balanced or unbalanced, they may or may not cause objects to move, and they only cancel each other out when they are equal in magnitude but opposite in direction.
#SPJ6
Answer:
f(t) = 28,7 [N]
Explanation: IMPORTANT NOTE: IN PROBLEM STATEMENT CHARGES ARE IN C (COULOMBS) AND IN THE DIAGRAM IN μC. WE ASSUME CHARGES ARE IN μC.
The net force on +q₂ is the sum of the force of +q₁ on +q₂ ( is a repulsion force since charges of equal sign repel each other ) and the force of -q₃ on +q₂ ( is an attraction force, opposite sign charges attract each other)
The two forces have the same direction to the right of charge q₂, we have to add them
Then
f(t) = f₁₂ + f₃₂
f₁₂ = K * ( q₁*q₂ ) / (0,1)²
q₁ = + 8 μC then q₁ = 8*10⁻⁶ C
q₂ = + 3,5 μC then q₂ = 3,5 *10⁻⁶ C
K = 9*10⁹ [ N*m² /C²]
f₁₂ = 9*10⁹ * 8*3,5*10⁻¹²/ 1*10⁻² [ N*m² /C²]* C*C/m²
f₁₂ = 252*10⁻¹ [N]
f₁₂ = 25,2 [N]
f₃₂ = 9*10⁹*3,5*10⁻⁶*2,5*10⁻⁶ /(0,15)²
f₃₂ = 78,75*10⁻³/ 2,25*10⁻²
f₃₂ = 35 *10⁻¹
f₃₂ = 3,5 [N]
f(t) = 28,7 [N]
Answer:
facts
Explanation:
a ball being thrown straight up would excel faster.
at a distance of 0.2m for m the equilibrium position.
Answer:
a) 12.8 N
b) 3.2 m/s²
Explanation:
I'm guessing the period is 0.5π s.
Period of a spring in simple harmonic motion is:
T = 2π √(m/k)
Given T = 0.5π and m = 2 kg:
0.5π = 2π √(2/k)
0.25 = √(2/k)
0.0625 = 2/k
k = 32
The spring constant is 32 N/m, and the maximum displacement is 0.4 m. The maximum force can be found with Hooke's law:
F = kx
F = (32 N/m) (0.4 m)
F = 12.8 N
The acceleration can be found with Newton's second law:
∑F = ma
kx = ma
(32 N/m) (0.2 m) = (2 kg) a
a = 3.2 m/s²
breaking a rock
baking a potato
rotting fruit