Answer: 1 x
Explanation: You can see that the only non-zero digit is 1, so it is 1 x 1,000 has 3 zeroes to the left of the period, so it is1x . Quite simple!
Answer:
Ammonia has 4 regions of electron density around the central nitrogen atom (3 bonds and one lone pair). These are arranged in a tetrahedral shape. The resulting molecular shape is trigonal pyramidal with H-N-H angles of 106.7°.
Explanation:
The correct answer is 9.6h.
As you know, a radioactive isotope's nuclear half-life tells you exactly how much time must pass in order for an initial sample of this isotope to be halved.
Using the formula , A = Ao.
where , A- final mass after decay
Ao - initial mass
n - the number of half-lives that pass in the given period of time
Now, putting all the values, we get
1.3 × mg = 0.050 mg ×
Take the natural log of both sides of the equation to get,
㏑ = ㏑
㏑ = n. ln
n = 1.6
Since n represents the number of half-lives that pass in a given period of time, you can say that
t= 1.6 × 6 h
t = 9.6h
Hence, it will take 9.6 h until the radioactive isotope decays.
Learn more about radioactive isotope andhalf life here:-
#SPJ1
Using the formula for radioactive decay and the provided half-life of technetium-99m, it can be calculated that it takes approximately 28.5 hours for 0.050 mg of technetium-99m to decay to a quantity of 1.3 x 10^-2 mg.
The decay of a radioactive isotope is an exponential process based on the half-life, which is, in turn, constant for any given isotope. The general formula for the remaining quantity of a radioactive isotope after a given time is given by: N = N0 (0.5) ^(t/t1/2), where (N0) is the initial amount, (N) is the remaining amount, (t) is time, and (t1/2) is the half-life of the isotope. In this case, we are given the initial quantity (N0 = 0.050 mg), the remaining quantity (N = 1.3 x 10^-2 mg), and the half-life (t1/2 = 6.0 hours).
We can solve for time (t) in the equation: N = N0 (0.5) ^(t/t1/2). Plugging in the values, we get 1.3 x 10^-2 = 0.050 x (0.5)^(t/6), and solving for t, we find that it takes approximately 28.5 hours for the technetium-99m to decay to 1.3 x 10^-2 mg.
#SPJ11
The reaction PCl5 + 4H2O -> H3PO4 + 5HCl involves 5 moles of HCl and 4 moles of water. Thus, for every mole of HCl produced, 0.8 moles of water is consumed. Hence, in this scenario, 2.76 moles of water would have been consumed to produce 3.45 moles of HCl.
In the balanced equation, PCl5 + 4H2O -> H3PO4 + 5HCl, you notice that 4 moles of water react with PCl5 to produce 5 moles of HCl. This means for every mole of HCl produced, 0.8 moles of water would have been consumed (4 moles / 5 moles).
So, if the reaction results in 3.45 moles of HCl, we can calculate the number of moles of water that reacted by multiplying the moles of HCl by 0.8. This gives us 2.76 moles of water.
#SPJ12
By creating a proportion based on the balanced chemical equation, it is determined that 2.76 moles of water reacted with PCl5 to produce 3.45 moles of HCl.
To determine how many moles of water reacted if 3.45 moles of HCl are produced, we refer to the balanced chemical equation:
PCl5 + 4H2O → H3PO4 + 5HClAccording to the equation, for every 5 moles of HCl produced, 4 moles of water are needed. Therefore, you can set up a proportion to calculate the moles of water:
Solving for x gives you the number of moles of water that reacted:
x = (3.45 moles HCl × 4 moles H2O) / 5Thus, x = 2.76 moles of H2O.
#SPJ3
A base is an H⁺ acceptor, whereas an acid is an H⁺ donor. Acidic chemicals are typically recognized by their sour flavor.
Any hydrogen which contains a compound capable of giving a proton to another material is described as an acid. An ion and molecule that can receive a hydrogen ion from that of an acid is known as a base. Acidic chemicals are typically recognized by their sour flavor.
In essence, an acid is a substance that has the capacity to donate an H⁺ ion plus maintain its energetic favorability even after losing an H⁺ ion. It is well known that acids may change blue litmus into red. Bases, on the other hand, have a slick consistency and a bitter flavor. A base is an H⁺ acceptor, whereas an acid is an H⁺ donor.
Therefore, a base is an H⁺ acceptor, whereas an acid is an H⁺ donor.
To learn more about acid-base theory, here:
#SPJ6
Answer:
Explanation:
Frequency is a magnitude that measures the number of repetitions/time of a wave.
Let's remember that a wave is a periodic movement whose propagation develops in a vacuum or in a physical environment.
B. 2, 8, 18, 32
C. 8, 8, 8, 8