4.289 x 10^0 can be written as a regular number by moving the decimal point to the right or left based on the exponent value. Since the exponent is 0, the decimal point does not need to be moved. Therefore, the regular number form of 4.289 x 10^0 is simply 4.289.
Answer:
The larger top plastic piece will be cooler than the smaller top plastic piece, because the energy that transferred to it was spread out over more molecules.
Explanation: I did the test
Answer:
(a) Iron is being oxidized.
(d) Sulfur is being reduced.
Explanation:
Let's consider the following redox reaction.
8 Fe(s) + S₈(s) → 8 FeS(s)
Iron is being oxidized according to the following oxidation half-reaction:
Fe(s) → Fe²⁺(s) + 2 e⁻
Sulfur is being reduced according to the following reduction half-reaction:
S₈(s) + 16 e⁻ → 8 S²⁻(s)
The mass of hydrogen gas obtained is 0.068 g of hydrogen gas.
The equation of the reaction is;
Ca(s) +2H2O(l) →Ca(OH)2(aq) + H2(g)
We have to obtain the number of moles of hydrogen gas produced using the information in the question.
P = 988mmHg - 17.54 mmHg = 1.28 atm
V = 641 mL or 0.641 L
T = 20 + 273 = 293 K
n = ?
R = 0.082 atmLK-1mol-1
From;
PV = nRT
n = PV/RT
n = 1.28 atm × 0.641 L/ 0.082 atmLK-1mol-1 × 293 K
n = 0.82/24.026
n = 0.034 moles
Mass of hydrogen = 0.034 moles × 2 g/mol = 0.068 g of hydrogen gas
Learn more: brainly.com/question/1445383
Answer:
There is 0.0677 grams of H2 gas obtained
Explanation:
Step 1: Data given
The total pressure (988 mmHg) is the sum of the pressure of the collected hydrogen + the vapor pressure of water (17.54 mmHg).
ptotal = p(H2)+ p(H2O)
p(H2) = ptotal - pH2O = 988 mmHg - 17.54 mmHg = 970.46 mmHg
Step 2: Calculate moles of H2 gas
Use the ideal gas law to calculate the moles of H2 gas
PV = nRT
n = PV / RT
⇒ with p = pressure of H2 in atm = 970.46 mmHg * (1 atm /760 mmHg) = 1.277 atm
⇒ V = volume of H2 in L = 641 mL x (1 L / 1000 mL) = 0.641 L
⇒ n = the number of moles of H2 = TO BE DETERMINED
⇒ R = the gas constant = 0.08206 L*atm/K*mol
⇒ T = the temperature = 20.0 °C = 293.15 Kelvin
n = (1.277)(0.641) / (0.08206)(298.15) = 0.0335 moles H2
Step 3: Calculate mass of H2
Mass of H2 = moles H2 ¨molar H2
0.0335 moles H2 * 2.02 g/mol H2 = 0.0677g H2
There is 0.0677 grams of H2 gas obtained
Answer:
Explanation:
1, Formula
2. Determine mass of solution
Substitute the data and clear the mass of solution:
3. Determine the mass of solvent:
Round to two significant figures: 83 g
proton in scientific notation?
Answer:
1.67 ×10^-24g
Explanation:
counting from the first digit after the point till I got to the first non zero digit