Answer:
32
Step-by-step explanation:
count by fives
In a series of 50 coin tosses, a coin needs to land heads 30 times to have an experimental probability 20% greater than the theoretical probability.
The subject of focus here is the allusion to the theory of probability, particularly in relation to a fair coin flip. The theoretical probability of obtaining either heads or tails in a coin flip is 0.5. However, the student is interested in having an experimental probability 20% greater than the theoretical probability.
We can first calculate the theoretical counts of expected heads per 50 tosses, which is (0.5 * 50) = 25. This result represents the notion that if a coin is thrown 50 times, on average, will land heads 25 times based on the theoretical probability.
To achieve an experimental probability 20% greater than the theoretical probability, we need to find a count of heads that corresponds to a probability that is 20% more than 0.5 (the theoretical probability). This new probability is therefore 0.6 and the corresponding count of heads required would be (0.6 * 50) = 30. Hence, in 50 tosses, the coin would need to show heads 30 times to have an experimental probability 20% greater than the theoretical probability of getting heads.
#SPJ12
Answer:
The geometric mean of 125 and 5 is, 25
Step-by-step explanation:
Geometric mean(GM) of two number is given by:
As per the statement:
Given two numbers i.e 125 and 5
then by definition we have;
⇒
⇒
⇒GM = 25
Therefore, the geometric mean of 125 and 5 is, 25