Answer:
To solve the system of linear equations using Gaussian elimination, we'll write the augmented matrix and perform row operations to transform it into row echelon form.
The given system of equations:
-2x_1 + 3x_2 + x_3 = 2
-3x_1 + 4x_2 + 2x_3 = 2
x_1 - 5x_2 + 4x_3 = -9
-2x_1 + 4x_2 - 4x_3 = 8
Writing the augmented matrix:
[ -2 3 1 | 2 ]
[ -3 4 2 | 2 ]
[ 1 -5 4 | -9 ]
[ -2 4 -4 | 8 ]
1. Row 1 Ã (-3) + Row 2 â Row 2:
[ -2 3 1 | 2 ]
[ 9 -13 -5 | -6 ]
[ 1 -5 4 | -9 ]
[ -2 4 -4 | 8 ]
2. Row 1 Ã (1/2) + Row 3 â Row 3:
[ -2 3 1 | 2 ]
[ 9 -13 -5 | -6 ]
[ -1 (3/2) 2 | -5/2]
[ -2 4 -4 | 8 ]
3. Row 1 Ã (-1) + Row 4 â Row 4:
[ -2 3 1 | 2 ]
[ 9 -13 -5 | -6 ]
[ -1 (3/2) 2 | -5/2]
[ 0 7 -3 | 6 ]
4. Row 2 Ã (-9/7) + Row 3 â Row 3:
[ -2 3 1 | 2 ]
[ 9 -13 -5 | -6 ]
[ -1 0 (59/7) | -(23/7)]
[ 0 7 -3 | 6 ]
5. Row 2 Ã (2/3) + Row 4 â Row 4:
[ -2 3 1 | 2 ]
[ 9 -13 -5 | -6 ]
[ -1 0 (59/7) | -(23/7)]
[ 0 0 (-11/7) | 0 ]
6. Row 3 Ã (-14/11) + Row 4 â Row 4:
[ -2 3 1 | 2 ]
[ 9 -13 -5 | -6 ]
[ -1 0 (59/7) | -(23/7)]
[ 0 0 1 | 0 ]
7. Row 3 Ã (1/2) + Row 1 â Row 1:
[ -1 3/2 3/2 | (4/7) ]
[ 9 -13 -5 | -6 ]
[ -1 0 1 | 0 ]
[ 0 0 1 | 0 ]
8. Row 3 Ã (9/7) + Row 2 â Row 2:
[ -1 3/2 3/2 | (4/7) ]
[ 0 -26/7 -14/7 | -42/7 ]
[ -1 0 1 | 0 ]
[ 0 0 1 | 0 ]
9. Row 3 Ã (1/2) + Row 4 â Row 4:
[ -1 3/2 3/2 | (4/7) ]
[ 0 -26/7 -14/7 | -42/7 ]
[ -1 0 1 | 0 ]
[ 0 0 1 |
Answer:
he ded
Step-by-step explanation:
\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \tohe no alive because ⇆ω⇆π⊂∴∨α∈\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to
X2-15x+50=0
Answer:
(x - 10)(x - 5)
Step-by-step explanation:
Well to factor X^2-15x+50
we need to find 2 numbers that multiply to get 50 and add to get -15.
-5 * -10 = 50
-5 + -10
x*x = x^2
Factored (x - 10)(x - 5)
Hope this helps :)
Answer:
(x - 10)(x - 5)
Step-by-step explanation:
Step 1- Find 2 numbers that multiply to be 50.
10 × 5
-10 × -5
25 × 2
-25 × -2
All these multiply to get 50.
But the numbers must also add up to be -15.
Step 2- Find the 2 numbers that also add up to be -15.
10 + 5 = 15
-10 + -5 = -15
25 + 2 = 27
-25 + -2 = -27
The correct equation would be - 10 + -5
The 2 number you would use when you factor would be -10 and -5
Step 3- Write the equation
You can write the equation as (x - 10)(x - 5)
Or you can also write it as (x - 5)(x - 10)
Answer:
Expected number of students would have a driver's license = 6
Step-by-step explanation:
Explanation:-
Given data In a class of 25 students, 15 of them have a driver's license
The sample proportion
Let 'X' be the binomial distribution
Given sample size 'n' = 10
mean of the binomial distribution or expected number of students would have a driver's license
μ = n p
= 10 × 0.6
= 6
Conclusion:-
Expected number of students would have a driver's license = 6
Answer:
The number of dolls sold 10,400
Step-by-step explanation:
Given: The number N of dolls sold varies directly with their advertising budget A and inversely with the price P of each doll.
N = k(A/P), where k is the constant.
Now we have to find k.
Given: N = 5200, A = 26,000 and P = 30
5200 = k (26000/30)
5200 = k(866.67)
k = 5.99, when we round off we get k = 6
Now let's find the number of dolls sold when the ad amount increase to $52,000
Now plug k = 6, A = 52000 and p = 30
N = 6(52000/30)
N = (52000/5)
N = 10.400
Therefore, the number of dolls sold 10,400
Hope this will helpful.
Thank you.