What is matter? explain and give example

Answers

Answer 1
Answer: Matter is generally any physical substance, and it's all around us... a form of matter would be liquid, and water is a liquid.

Related Questions

Two children, Ferdinand and Isabella, are playing with a waterhose on a sunny summer day. Isabella is holding the hose in herhand 1.0 meters above the ground and is trying to spray Ferdinand,who is standing 10.0 meters away. I know so far that she cannotspray Ferdinand at the current position and with the curreentspeed of spray. I got stuck inthe following question:To increase the range of the water, Isabellaplaces her thumb on the hose hole and partially covers it. Assuming that the flow remains steady, what fraction f of the cross-sectional area of the hose hole does shehave to cover to be able to spray her friend?Assume that the cross section of the hoseopening is circular with a radius of 1.5 centimeters.
Express the following speeds as a function of the speed of light, c: (a) an automobile speed (93 km/h) (b) the speed of sound (329 m/s) (c) the escape velocity of a rocket from the Earth's surface (12.1 km/s) (d) the orbital speed of the Earth about the Sun (Sun-Earth distance 1.5×108 km).
You are given a parallel plate capacitor with plates having a rectangular area of 16.4 cm2 and a separation of 2.2 mm. The space between the plates is filled with a material having a dielectric constant κ = 2.0.Find the capacitance of this system
Why Coulomb force is called "Mutual Force"???????????????????????????????????????
Question 11 of 15When hydrogen is attached to the more highly electronegative oxygen atom in a water molecule, A. the electronegative atom becomes strongly positive B. the hydrogen atom becomes partially positive O C. the oxygen atom becomes partially negative If answer is right WILL GIVE BRAINLIEST D. the hydrogen atom becomes partially negative

What is the maximum distance allowed between the center of hole #2 and datum B as seen in the front view?

Answers

Answer:

4.003" (inches )

Explanation:

The maximum distance allowed between the center of hole #2 and datum B can be calculated by adding 4.000" + 0.003" ( perpendicularity of the of hole #2) as seen from the front view of the diagram .

Note :The hole 2 is sited below the workpiece when viewed from the front view while the Datum B is positioned on the left end of the workpiece also note that the diameter is

How many joules of work are done on an object when a force of 10 N pushes it 5 m?A) 2 J
B) 5 J
C) 50 J
D) 1 J
E) 10 J

Answers

Answer:

option C

Explanation:

given,                            

Force on the object = 10 N

distance of push = 5 m

Work done = ?              

we know,              

work done is equal to Force into displacement.

W = F . s            

W = 10 x 5              

W = 50 J                

Work done by the object when 10 N force is applied is equal to 50 J

Hence, the correct answer is option C

Final answer:

The work done on an object when a force of 10 N pushes it 5 m is 50 Joules, calculated by multiplying the force and the displacement. So, the correct option is C.

Explanation:

The question is asking about work, which in physics is the result of a force causing a displacement. The formula for work is defined as the product of the force (in Newtons) and the displacement (in meters) the force causes. If a force of 10 N pushes an object a distance of 5 m, the work done is calculated by multiplying the force and the displacement (10 N * 5 m), yielding 50 Joules of work.

Therefore, the correct answer is 50 J (C).

Learn more about Work here:

brainly.com/question/31965083

#SPJ6

A 1500 kg car moving at 25 m/s hits an initially uncompressed horizontal ideal spring with spring constant (force constant) of 2.0 × 106 N/m. What is the maximum distance the spring compresses?

Answers

Answer:

x = 0.68 meters

Explanation:

It is given that,

Mass of the car, m = 1500 kg

Speed of the car, v = 25 m/s

Spring constant of the spring, k=2* 10^6\ N/m

When the car hits the uncompressed horizontal ideal spring the kinetic energy of the car is converted to the potential energy of the spring. Let x is the maximum distance compressed by the spring such that,

(1)/(2)mv^2=(1)/(2)kx^2

x=\sqrt{(mv^2)/(k)}

x=\sqrt{(1500* (25)^2)/(2* 10^6)}

x = 0.68 meters

So, the spring is compressed by a distance of 0.68 meters. Hence, this is the required solution.

Final answer:

The maximum distance the spring compresses when a 1500 kg car moving at 25 m/s hits it, given a spring constant of 2.0 × 10⁶N/m, is approximately 0.53 meters or 53 centimeters.

Explanation:

In this specific problem, we can apply the conservation of energy principle, where the initial kinetic energy of the car is converted into potential energy stored in the spring when the car comes to a stop. The formula for kinetic energy is K = 1/2 × m× v² and for potential energy stored in a spring is U = 1/2×k × x², where m = mass of the car, v = velocity of the car, k = spring constant, and x = maximum distance the spring is compressed.

By setting the kinetic energy equal to potential energy (since no energy is lost), we get 1/2 × m×v² = 1/2×k×x². Solving this equation for x (maximum compression of the spring), we obtain x = sqrt((m×v²)/k). Substituting the given values, x = sqrt((1500 kg× (25 m/s)²) / (2.0 × 10⁶ N/m)), which yields approximately 0.53 meters or 53 centimeters. Therefore, the maximum distance the spring compresses is 53 cm.

Learn more about Conservation of Energy here:

brainly.com/question/35373077

#SPJ3

A model airplane with a mass of 0.741kg is tethered by a wire so that it flies in a circle 30.9 m in radius. The airplane engine provides anet thrust of 0.795 N perpendicular tothe tethering wire.(a) Find the torque the net thrust producesabout the center of the circle.
N·m

(b) Find the angular acceleration of the airplane when it is inlevel flight.
rad/s2

(c) Find the linear acceleration of the airplane tangent to itsflight path.
m/s2

Answers

(a) 24.6 Nm

The torque produced by the net thrust about the center of the circle is given by:

\tau = F r

where

F is the magnitude of the thrust

r is the radius of the wire

Here we have

F = 0.795 N

r = 30.9 m

Therefore, the torque produced is

\tau = (0.795 N)(30.9 m)=24.6 N m

(b) 0.035 rad/s^2

The equivalent of Newton's second law for a rotational motion is

\tau = I \alpha

where

\tau is the torque

I is the moment of inertia

\alpha is the angular acceleration

If we consider the airplane as a point mass with mass m = 0.741 kg, then its moment of inertia is

I=mr^2 = (0.741 kg)(30.9 m)^2=707.5 kg m^2

And so we can solve the previous equation to find the angular acceleration:

\alpha = (\tau)/(I)=(24.6 Nm)/(707.5 kg m^2)=0.035 rad/s^2

(c) 1.08 m/s^2

The linear acceleration (tangential acceleration) in a rotational motion is given by

a=\alpha r

where in this problem we have

\alpha = 0.035 rad/s^2 is the angular acceleration

r = 30.9 m is the radius

Substituting the values, we find

a=(0.035 rad/s^2)(30.9 m)=1.08 m/s^2

Why might a scientist want to use a model to study the solar system? O A. Its extreme simplicity makes it difficult to see patterns in observations. B. Its extremely slow movement makes it difficult to see the motions of different planets. C. Its extremely large size makes it difficult to see all of its parts at the same time. D. Its extremely small size makes it difficult to see planets that are far away​

Answers

A scientist wants to use a model to study the solar model because its extremely large size makes it difficult to see all of its parts at the same time. Hence, option C is correct.

What is a Solar System?

The Sun and all the smaller movable objects that orbit it make up the Solar System. The eight main planets are the largest objects in the Solar System, excluding the Sun. Mercury, Venus, Earth, and Mars are the four relatively tiny, rocky planets closest to the Sun.

The asteroid belt, which is home to millions of stony objects, lies beyond Mars. These are remains from the planets' creation 4.5 billion years ago.

Jupiter, Saturn, Uranus, and Neptune are the four gas giants that can be found on the opposite side of the asteroid belt. Despite being much larger than Earth, these planets are rather light. Their main components are hydrogen and helium.

To get more information about Solar systems:

brainly.com/question/18365761

#SPJ5

How much heat is required to convert 0.3 kilogram of ice at 0°C to water at the same temperature? A. 334,584 J B. 167,292 J C. 100,375 J D. 450,759 J

Answers

Answer:

Option C is the correct answer.

Explanation:

Heat required to melt solid in to liquid is calculated using the formula

            H = mL, where m is the mass and L is the latent heat of fusion.

Latent heat of fusion for water = 333.55 J/g

Mass of ice = 0.3 kg = 300 g

Heat required to convert 0.3 kilogram of ice at 0°C to water at the same temperature

          H = mL = 300 x 333.55 = 100,375 J

Option C is the correct answer.