Please help me A person launches a home-built model rocket straight upinto the air at y = 0 from rest at time t = 0 . (The positive y-direction is upwards). The fuel burns out at t = t0. The position of the rocket is given by


with a0 and g are positive. Find the y-components of the velocity and acceleration of the rocket as a function of time. Graph ay vs t for 0 < t < t0.
please help me A person launches a home-built model rocket - 1

Answers

Answer 1
Answer:
-- We know that the y-component of acceleration is the derivative of the
y-component of velocity.

-- We know that the y-component of velocity is the derivative of the
y-component of position.

-- We're given the y-component of position as a function of time.

So, finding the velocity and acceleration is simply a matter of differentiating
the position function ... twice.

Now, the position function may look big and ugly in the picture.  But with the
exception of  't' , everything else in the formula is constants, so we don't even
need any fancy processes of differentiation.  The toughest part of this is going
to be trying to write it out, given the text-formatting capabilities of the wonderful
envelope-pushing website we're working on here.

From the picture . . . . . y (t) = (1/2) (a₀ - g) t² - (a₀ / 30t₀⁴ ) t⁶

First derivative . . . y' (t) = (a₀ - g) t  -  6 (a₀ / 30t₀⁴ ) t⁵  =  (a₀ - g) t  -  (a₀ / 5t₀⁴ ) t⁵

There's your velocity . . . /\ .

Second derivative . . . y'' (t) = (a₀ - g) -  5 (a₀ / 5t₀⁴ ) t⁴ = (a₀ - g) -  (a₀ /t₀⁴ ) t⁴

and there's your acceleration . . . /\ .
That's the one you're supposed to graph.

a₀ is the acceleration due to the model rocket engine thrust
     combined with the mass of the model rocket
'g' is the acceleration of gravity ... 9.8 m/s² or 32.2 ft/sec²
t₀  is how long the model rocket engine burns

Pick, or look up, some reasonable figures for a₀ and t₀
and you're in business.

The big name in model rocketry is Estes.  Their website will give you
all the real numbers for thrust and burn-time of their engines, if you
want to follow it that far.



Related Questions

A printer has a power of 100 W. It takes 30 seconds to print out a document. How much energy will ithave used?
Which of the following is not a natural source of light?a. The sun b. Fluorescence c. Phosphorescence d. Oil lamps
When Jane drives to work, she always places her purse on the passenger’s seat. By the time she gets to work, her purse has fallen on the floor in front of the passenger seat. One day, she asks you to explain why this happens in terms of physics. What do you say?
Why does a siren on an ambulance sound louder as it approaches you?
Name three elements that are good conductors of electricity

um carro com uma velocidade de 80 km\h passa pelo km 240 de uma rodovia as 7:30. a que horas este carro chegara a proxima cidade, sabendo-se que a mesma esta situada no km 300 dessa rodovia?

Answers

From km 240 to km 300 there are 60 km.

The time to travel 60 km at 80km/h is t = d/V = 60km / 80 km/h = 3/4 h.

That is 45 minutes. Then the car will arrive at 7:30 + 45 min = 8:15.

At its closest point, Mercury is approximately 46 million kilometers from the sun. What is this distance in AU?

Answers

This problem can be solved using the following relation: 1 kilometer = 6.6846e-9 AU. Since we are already given the number of kilometers, we simply have to multiply it to its equivalent in AU to solve for the equivalent distance. This is done below:

46 000 000 * 6.6846e-9 = 0.3 AU

Draw a diagram to show how two resistors R1 and R2 are connected in parallel.

Answers

See attached
--------------------------------

How many electrons does nitrogen (N) need to gain to have a stable outer electron shell?

Answers

it needs 3 electrons to have it stabled

You have two pieces of wire that allows electrons to pass through them when they are connected to each other. If you insert a piece of rubber between the wires, the electrons do not flow. The rubber material is ??

Answers

An insulator of electricity

suppose that you look into a photometer's eyepiece and the fluorescent disks appear to be equal in intensity. If the distance between the photometer to lamp 1 is 400mm, the distance between the photometer to lamp 2 is 200 mm, and the intensity of lamp 2 is known to be 15 candelas, what is the intensity to lamp 1?

Answers

Use the Inverse square law, Intensity (I) of a light is inversely proportional to the square of the distance(d).

I=1/(d*d)

Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.

L1/L2=(D2*D2)/(D1*D1)

L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 candela